466 research outputs found

    A Candidate Brightest Proto-Cluster Galaxy at z = 3.03

    Full text link
    We report the discovery of a very bright (m_R = 22.2) Lyman break galaxy at z = 3.03 that appears to be a massive system in a late stage of merging. Deep imaging reveals multiple peaks in the brightness profile with angular separations of ~0.''8 (~25 h^-1 kpc comoving). In addition, high signal-to-noise ratio rest-frame UV spectroscopy shows evidence for ~5 components based on stellar photospheric and ISM absorption lines with a velocity dispersion of sigma ~460 km s^-1 for the three strongest components. Both the dynamics and high luminosity, as well as our analysis of a LCDM numerical simulation, suggest a very massive system with halo mass M ~ 10^13 M_solar. The simulation finds that all halos at z = 3 of this mass contain sub-halos in agreement with the properties of these observed components and that such systems typically evolve into M ~ 10^14 M_solar halos in groups and clusters by z = 0. This discovery provides a rare opportunity to study the properties and individual components of z ~ 3 systems that are likely to be the progenitors to brightest cluster galaxies.Comment: 14 pages, 3 figures, submitted to ApJ Letter

    Orbiting Circum-galactic Gas as a Signature of Cosmological Accretion

    Full text link
    We use cosmological SPH simulations to study the kinematic signatures of cool gas accretion onto a pair of well-resolved galaxy halos. Cold-flow streams and gas-rich mergers produce a circum-galactic component of cool gas that generally orbits with high angular momentum about the galaxy halo before falling in to build the disk. This signature of cosmological accretion should be observable using background-object absorption line studies as features that are offset from the galaxy's systemic velocity by ~100 km/s. Accreted gas typically co-rotates with the central disk in the form of a warped, extended cold flow disk, such that the observed velocity offset is in the same direction as galaxy rotation, appearing in sight lines that avoid the galactic poles. This prediction provides a means to observationally distinguish accreted gas from outflow gas: the accreted gas will show large one-sided velocity offsets in absorption line studies while radial/bi-conical outflows will not (except possibly in special polar projections). This rotation signature has already been seen in studies of intermediate redshift galaxy-absorber pairs; we suggest that these observations may be among the first to provide indirect observational evidence for cold accretion onto galactic halos. Cold mode halo gas typically has ~3-5 times more specific angular momentum than the dark matter. The associated cold mode disk configurations are likely related to extended HI/XUV disks seen around galaxies in the local universe. The fraction of galaxies with extended cold flow disks and associated offset absorption-line gas should decrease around bright galaxies at low redshift, as cold mode accretion dies out.Comment: 15 pages, 9 figures, edited to match published version. Includes expanded discussion, with primary results unchange

    Stealth Galaxies in the Halo of the Milky Way

    Full text link
    We predict that there is a population of low-luminosity dwarf galaxies orbiting within the halo of the Milky Way that have surface brightnesses low enough to have escaped detection in star-count surveys. The overall count of stealth galaxies is sensitive to the presence (or lack) of a low-mass threshold in galaxy formation. These systems have luminosities and stellar velocity dispersions that are similar to those of known ultrafaint dwarf galaxies but they have more extended stellar distributions (half light radii greater than about 100 pc) because they inhabit dark subhalos that are slightly less massive than their higher surface brightness counterparts. As a result, the typical peak surface brightness is fainter than 30 mag per square arcsec. One implication is that the inferred common mass scale for Milky Way dwarfs may be an artifact of selection bias. If there is no sharp threshold in galaxy formation at low halo mass, then ultrafaint galaxies like Segue 1 represent the high-mass, early forming tail of a much larger population of objects that could number in the hundreds and have typical peak circular velocities of about 8 km/s and masses within 300 pc of about 5 million solar masses. Alternatively, if we impose a low-mass threshold in galaxy formation in order to explain the unexpectedly high densities of the ultrafaint dwarfs, then we expect only a handful of stealth galaxies in the halo of the Milky Way. A complete census of these objects will require deeper sky surveys, 30m-class follow-up telescopes, and more refined methods to identify extended, self-bound groupings of stars in the halo.Comment: 12 pages, 7 figures, accepted by ApJ. Several crucial references added and the discussion has been expanded. Conclusions are unchanged

    Exposure-Response Estimates for Diesel Engine Exhaust and Lung Cancer Mortality Based on Data from Three Occupational Cohorts

    Get PDF
    Background: Diesel engine exhaust (DEE) has recently been classified as a known human carcinogen. Objective: We derived a meta-exposure–response curve (ERC) for DEE and lung cancer mortality and estimated lifetime excess risks (ELRs) of lung cancer mortality based on assumed occupational and environmental exposure scenarios. Methods: We conducted a meta-regression of lung cancer mortality and cumulative exposure to elemental carbon (EC), a proxy measure of DEE, based on relative risk (RR) estimates reported by three large occupational cohort studies (including two studies of workers in the trucking industry and one study of miners). Based on the derived risk function, we calculated ELRs for several lifetime occupational and environmental exposure scenarios and also calculated the fractions of annual lung cancer deaths attributable to DEE. Results: We estimated a lnRR of 0.00098 (95% CI: 0.00055, 0.0014) for lung cancer mortality with each 1-μg/m3-year increase in cumulative EC based on a linear meta-regression model. Corresponding lnRRs for the individual studies ranged from 0.00061 to 0.0012. Estimated numbers of excess lung cancer deaths through 80 years of age for lifetime occupational exposures of 1, 10, and 25 μg/m3 EC were 17, 200, and 689 per 10,000, respectively. For lifetime environmental exposure to 0.8 μg/m3 EC, we estimated 21 excess lung cancer deaths per 10,000. Based on broad assumptions regarding past occupational and environmental exposures, we estimated that approximately 6% of annual lung cancer deaths may be due to DEE exposure. Conclusions: Combined data from three U.S. occupational cohort studies suggest that DEE at levels common in the workplace and in outdoor air appear to pose substantial excess lifetime risks of lung cancer, above the usually acceptable limits in the United States and Europe, which are generally set at 1/1,000 and 1/100,000 based on lifetime exposure for the occupational and general population, respectively. Citation: Vermeulen R, Silverman DT, Garshick E, Vlaanderen J, Portengen L, Steenland K. 2014. Exposure-response estimates for diesel engine exhaust and lung cancer mortality based on data from three occupational cohorts. Environ Health Perspect 122:172–177; http://dx.doi.org/10.1289/ehp.130688

    A central role for dityrosine crosslinking of Amyloid-β in Alzheimer’s disease

    Get PDF
    Background Alzheimer’s disease (AD) is characterized by the deposition of insoluble amyloid plaques in the neuropil composed of highly stable, self-assembled Amyloid-beta (Aβ) fibrils. Copper has been implicated to play a role in Alzheimer’s disease. Dimers of Aβ have been isolated from AD brain and have been shown to be neurotoxic. Results We have investigated the formation of dityrosine cross-links in Aβ42 formed by covalent ortho-ortho coupling of two tyrosine residues under conditions of oxidative stress with elevated copper and shown that dityrosine can be formed in vitro in Aβ oligomers and fibrils and that these links further stabilize the fibrils. Dityrosine crosslinking was present in internalized Aβ in cell cultures treated with oligomeric Aβ42 using a specific antibody for dityrosine by immunogold labeling transmission electron microscopy. Results also revealed the prevalence of dityrosine crosslinks in amyloid plaques in brain tissue and in cerebrospinal fluid from AD patients. Conclusions Aβ dimers may be stabilized by dityrosine crosslinking. These results indicate that dityrosine cross-links may play an important role in the pathogenesis of Alzheimer’s disease and can be generated by reactive oxygen species catalyzed by Cu2+ ions. The observation of increased Aβ and dityrosine in CSF from AD patients suggests that this could be used as a potential biomarker of oxidative stress in AD
    corecore