297 research outputs found

    USING RADAR TO REVEAL LARGE-SCALE IN-FLIGHT BEHAVIORS OF MIGRATORY BIRDS

    Get PDF
    The shortest possible migratory route for birds is not always the best route to travel. Substantial research effort has established that birds in captivity are capable of orienting toward the direction of an intended goal, but efforts to examine how free-living birds use navigational information under conditions that potentially make direct flight toward that goal inefficient have been limited in spatiotemporal scales and in the number of individuals observed because of logistical and technological limitations. Using novel and recently developed techniques for analysis of Doppler polarimetric weather surveillance radar data, I examine in-flight behaviors employed by migratory birds as they transition to and from their wintering and breeding grounds. I explore regional, seasonal, altitudinal, and latitudinal dependencies on how migrants utilize and cope with winds aloft

    Seasonal associations with light pollution trends for nocturnally migrating bird populations

    Get PDF
    This project was supported by The Leon Levy Foundation, The Wolf Creek Charitable Foundation, Lyda Hill Philanthropies, Amon G. Carter Foundation, National Aeronautics and Space Administration (80NSSC21K1143), and National Science Foundation (ABI sustaining DBI-1939187, GCR-2123405). Computing support was provided by the National Science Foundation (CNS-1059284 and CCF-1522054), and the Extreme Science and Engineering Discovery Environment (XSEDE; National Science Foundation, ACI-1548562) through allocation TG-DEB200010 run on Bridges at the Pittsburgh Supercomputing Center.Artificial light at night (ALAN) is adversely affecting natural systems worldwide, including the disorienting influence of ALAN on nocturnally migrating birds. Understanding how ALAN trends are developing across species' seasonal distributions will inform mitigation efforts, such as Lights Out programs. Here, we intersect ALAN annual trend estimates (1992-2013) with weekly estimates of relative abundance for 42 nocturnally migrating passerine bird species that breed in North America using observations from the eBird community science database for the combined period 2005-2020. We use a cluster analysis to identify species with similar weekly associations with ALAN trends. Our results identified three prominent clusters. Two contained species that occurred in northeastern and western North America during the breeding season. These species were associated with moderate ALAN levels and weak negative ALAN trends during the breeding season, and low ALAN levels and strong positive ALAN trends during the nonbreeding season. The difference between the breeding and nonbreeding seasons was lower for species that occurred in northern South America and greater for species that occurred in Central America during the nonbreeding season. For species that occurred in South America during the nonbreeding season, positive ALAN trends increased in strength as species migrated through Central America, especially in the spring. The third cluster contained species whose associations with positive ALAN trends remained high across the annual cycle, peaking during migration, especially in the spring. These species occurred in southeastern North America during the breeding season where they were associated with high ALAN levels, and in northern South America during the nonbreeding season where they were associated with low ALAN levels. Our findings suggest reversing ALAN trends in Central America during migration, especially in the spring, would benefit the most individuals of the greatest number of species. Reversing ALAN trends in southeastern North America during the breeding season and Central America during the nonbreeding season would generate the greatest benefits outside of migration.Publisher PDFPeer reviewe

    Near-term ecological forecasting for dynamic aeroconservation of migratory birds

    Get PDF
    Near-term ecological forecasting has the potential to mitigate negative impacts of human modifications on wildlife by directing efficient action through relevant and timely predictions. We used the U.S. avian migration system to highlight ecological forecasting applications for aeroconservation. We used millions of observations from 143 weather surveillance radars to construct and evaluate a migration forecasting system for nocturnal bird migration over the contiguous United States. We identified the number of nights of mitigation required to reduce the risk of aerial hazards to 50% of avian migrants passing a given area in spring and autumn based on dynamic forecasts of migration activity. We also investigated an alternative approach, that is, employing a fixed conservation strategy based on time windows that historically capture 50% of migratory passage. In practice, during both spring and autumn, dynamic forecasts required fewer action nights compared with fixed window selection at all locations (spring: mean of 7.3 more alert days; fall: mean of 12.8 more alert days). This pattern resulted in part from the pulsed nature of bird migration captured in the radar data, where the majority (54.3%) of birds move on 10% of a migration season\u27s nights. Our results highlight the benefits of near-term ecological forecasting and the potential advantages of dynamic mitigation strategies over static ones, especially in the face of increasing risks to migrating birds from light pollution, wind energy infrastructure, and collisions with structures

    The grand challenges of migration ecology that radar aeroecology can help answer

    Get PDF
    Many migratory species have experienced substantial declines that resulted from rapid and massive expansions of human structures and activities, habitat alterations and climate change. Migrants are also recognized as an integral component of biodiversity and provide a multitude of services and disservices that are relevant to human agriculture, economy and health. The plethora of recently published studies reflects the need for better fundamental knowledge on migrations and for better management of their ecological and human‐relevant effects. Yet, where are we in providing answers to fundamental questions and societal challenges? Engaging a broad network of researchers worldwide, we used a horizon‐scan approach to identify the most important challenges which need to be overcome in order to gain a fuller understanding of migration ecology, and which could be addressed using radar aeroecological and macroecological approaches. The top challenges include both long‐standing and novel topics, ranging from fundamental information on migration routes and phenology, orientation and navigation strategies, and the multitude of effects migrants may have on resident communities, to societal challenges, such as protecting or preventing migrant services and disservices, and the conservation of migrants in the face of environmental changes. We outline these challenges, identify the urgency of addressing them and the primary stakeholders – researchers, policy makers and practitioners, or funders of research.

    The Astropy Problem

    Get PDF
    The Astropy Project (http://astropy.org) is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Despite this, the project has always been and remains to this day effectively unfunded. Further, contributors receive little or no formal recognition for creating and supporting what is now critical software. This paper explores the problem in detail, outlines possible solutions to correct this, and presents a few suggestions on how to address the sustainability of general purpose astronomical software

    Comparative analytical performance of multiple plasma Aβ42 and Aβ40 assays and their ability to predict positron emission tomography amyloid positivity

    Get PDF
    INTRODUCTION: This report details the approach taken to providing a dataset allowing for analyses on the performance of recently developed assays of amyloid beta (Aβ) peptides in plasma and the extent to which they improve the prediction of amyloid positivity. METHODS: Alzheimer's Disease Neuroimaging Initiative plasma samples with corresponding amyloid positron emission tomography (PET) data were run on six plasma Aβ assays. Statistical tests were performed to determine whether the plasma Aβ measures significantly improved the area under the receiver operating characteristic curve for predicting amyloid PET status compared to age and apolipoprotein E (APOE) genotype. RESULTS: The age and APOE genotype model predicted amyloid status with an area under the curve (AUC) of 0.75. Three assays improved AUCs to 0.81, 0.81, and 0.84 (P < .05, uncorrected for multiple comparisons). DISCUSSION: Measurement of Aβ in plasma contributes to addressing the amyloid component of the ATN (amyloid/tau/neurodegeneration) framework and could be a first step before or in place of a PET or cerebrospinal fluid screening study. HIGHLIGHTS: The Foundation of the National Institutes of Health Biomarkers Consortium evaluated six plasma amyloid beta (Aβ) assays using Alzheimer's Disease Neuroimaging Initiative samples. Three assays improved prediction of amyloid status over age and apolipoprotein E (APOE) genotype. Plasma Aβ42/40 predicted amyloid positron emission tomography status better than Aβ42 or Aβ40 alone

    Correlations between SO2 flux, seismicity, and outgassing activity at the open vent of Villarrica volcano, Chile

    Get PDF
    The characteristics of the open vent activity of Villarrica volcano, Chile, were studied in detail by integrating visual observations of the lava lake, analysis of the seismic tremor, and measurements of SO2 flux. The outgassing activity comprises a persistent gas plume emission from the bottom of the crater as well as frequent explosive events. Three main styles of bubble bursting were identified at the surface of the active lava lake: seething magma, small short-lived lava fountains, and Strombolian explosions. Seething magma consists of continual burst of relatively small bubbles (a few meters in diameter) with varying strength over the entire surface of the lava lake. Small lava fountains, seen as a vigorous extension of seething magma, commonly have durations of 20–120 s and reach 10–40 m high above the lava lake. Correlations between seismicity and visual observations indicate that the seismic tremor is mostly caused by the explosive outgassing activity. Furthermore, for different periods between 2000 and 2006, during which the activity remained comparable, the real-time seismic amplitude measurement system (RSAM) and SO2 emission rates show a very good correlation. Higher SO2 emissions appeared to be related to higher levels of the lava lake, stronger bubble bursting activity, and changes in the morphology and texture of the crater floor. Background (low) levels of activity correspond to a lava lake located >80 m below the crater rim, small and/or blocky morphology of the roof, seismic amplitude (RSAM) lower than 25 units, few volcano-tectonic earthquakes, and daily averages of SO2 emissions lower than 600 Mg/d

    A factorial randomized controlled trial to evaluate the effect of micronutrients supplementation and regular aerobic exercise on maternal endothelium-dependent vasodilatation and oxidative stress of the newborn

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many studies have suggested a relationship between metabolic abnormalities and impaired fetal growth with the development of non-transmissible chronic diseases in the adulthood. Moreover, it has been proposed that maternal factors such as endothelial function and oxidative stress are key mechanisms of both fetal metabolic alterations and subsequent development of non-transmissible chronic diseases. The objective of this project is to evaluate the effect of micronutrient supplementation and regular aerobic exercise on endothelium-dependent vasodilation maternal and stress oxidative of the newborn.</p> <p>Methods and design</p> <p>320 pregnant women attending to usual prenatal care in Cali, Colombia will be included in a factorial randomized controlled trial. Women will be assigned to the following intervention groups: <it>1. Control group: </it>usual prenatal care (PC) and placebo (maltodextrine). <it>2. Exercise group: </it>PC, placebo and aerobic physical exercise. <it>3. Micronutrients group: </it>PC and a micronutrients capsule consisting of zinc (30 mg), selenium (70 μg), vitamin A (400 μg), alphatocopherol (30 mg), vitamin C (200 mg), and niacin (100 mg)<it>. 4. Combined interventions Group: </it>PC, supplementation of micronutrients, and aerobic physical exercise. Anthropometric measures will be taken at the start and at the end of the interventions.</p> <p>Discussion</p> <p>Since in previous studies has been showed that the maternal endothelial function and oxidative stress are related to oxidative stress of the newborn, this study proposes that complementation with micronutrients during pregnancy and/or regular physical exercise can be an early and innovative alternative to strengthen the prevention of chronic diseases in the population.</p> <p>Trial registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT00872365">NCT00872365</a>.</p
    corecore