75 research outputs found

    Alkaloid defenses of co-mimics in a putative Müllerian mimetic radiation

    Get PDF
    Background Polytypism in aposematic species is unlikely according to theory, but commonly seen in nature. Ranitomeya imitator is a poison frog species exhibiting polytypic mimicry of three congeneric model species (R. fantastica, R. summersi, and two morphs of R. variabilis) across four allopatric populations (a "mimetic radiation"). In order to investigate chemical defenses in this system, a key prediction of Müllerian mimicry, we analyzed the alkaloids of both models and mimics from four allopatric populations. Results In this study we demonstrate distinct differences in alkaloid profiles between co-mimetic species within allopatric populations. We further demonstrate that R. imitator has a greater number of distinct alkaloid types than the model species and more total alkaloids in all but one population. Conclusions Given that R. imitator is the more abundant species in these populations, R. imitator is likely driving the majority of predator-learned avoidance in these complexes. The success of Ranitomeya imitator as a putative advergent mimic may be a direct result of differences in alkaloid sequestration. Furthermore, we propose that automimicry within co-mimetic species is an important avenue of research

    N6-methyladenosine contributes to cellular phenotype in a genetically-defined model of breast cancer progression

    Get PDF
    The mRNA modification N6-methyladenosine (m6A) is involved in many post- transcriptional regulatory processes including mRNA stability and translational efficiency. However, it is also imperative to correlate these processes with phenotypic outputs during cancer progression. Here we report that m6A levels are significantly decreased in genetically-defined immortalized and oncogenically-transformed human mammary epithelial cells (HMECs), as compared with their primary cell predecessor. Furthermore, the m6A methyltransferase (METTL3) is decreased and the demethylase (ALKBH5) is increased in the immortalized and transformed cell lines, providing a possible mechanism for this basal change in m6A levels. Although the immortalized and transformed cells showed lower m6A levels than their primary parental cell line, overexpression of METTL3 and METTL14, or ALKBH5 knockdown to increase m6A levels in transformed cells increased proliferation and migration. Remarkably, these treatments had little effect on the immortalized cells. Together, these results suggest that m6A modification may be downregulated in immortalized cells as a brake against malignant progression. Finally, we found that m6A levels in the immortalized and transformed cells increased in response to hypoxia without corresponding changes in METTL3, METTL14 or ALKBH5 expression, suggesting a novel pathway for regulation of m6A levels under stress

    Variation in pigmentation gene expression is associated with distinct aposematic color morphs in the poison frog Dendrobates auratus

    Get PDF
    Background: Color and pattern phenotypes have clear implications for survival and reproduction in many species. However, the mechanisms that produce this coloration are still poorly characterized, especially at the genomic level. Here we have taken a transcriptomics-based approach to elucidate the underlying genetic mechanisms affecting color and pattern in a highly polytypic poison frog. We sequenced RNA from the skin from four different color morphs during the final stage of metamorphosis and assembled a de novo transcriptome. We then investigated differential gene expression, with an emphasis on examining candidate color genes from other taxa. Results: Overall, we found differential expression of a suite of genes that control melanogenesis, melanocyte differentiation, and melanocyte proliferation (e.g., tyrp1, lef1, leo1, and mitf) as well as several differentially expressed genes involved in purine synthesis and iridophore development (e.g., arfgap1, arfgap2, airc, and gart). Conclusions: Our results provide evidence that several gene networks known to affect color and pattern in vertebrates play a role in color and pattern variation in this species of poison frog

    Differential gene expression and gene variants drive color and pattern development in divergent color morphs of a mimetic poison frog

    Get PDF
    Evolutionary biologists have long investigated the ecological contexts, evolutionary forces, and proximate mechanisms that produce the diversity of animal coloration we see in the natural world. In aposematic species, color and pattern is directly tied to survival and thus understanding the origin of the phenotype has been a focus of both theoretical and empirical inquiry. In order to better understand this diversity, we examined gene expression in skin tissue during development in four different color morphs of the aposematic mimic poison frog, Ranitomeya imitator. We identified a suite of candidate color-related genes a priori and identified the pattern of expression in these genes over time, differences in expression of these genes between the mimetic morphs, and genetic variants that differ between color morphs. We identified several candidate color genes that are differentially expressed over time or across populations, as well as a number of color genes with fixed genetic variants between color morphs. Many of the color genes we discovered in our dataset are involved in the canonical Wnt signaling pathway, including several fixed SNPs between color morphs. Further, many genes in this pathway were differentially expressed at different points in development (e.g., lef1, tyr, tyrp1). Importantly, Wnt signaling pathway genes are overrepresented relative to expression in Xenopus tropicalis. Taken together, this provides evidence that the Wnt signaling pathway is contributing to color pattern production in R. imitator, and is an excellent candidate for producing some of the differences in color pattern between morphs. In addition, we found evidence that sepiapterin reductase is likely important in the production of yellow-green coloration in this adaptive radiation. Finally, two iridophore genes (arfap1, gart) draw a strong parallel to previous work in another dendrobatid, indicating that these genes are also strong candidates for differential color production. We have used high throughput sequencing throughout development to examine the evolution of coloration in a rapid mimetic adaptive radiation and found that these divergent color patterns are likely to be affected by a combination of developmental patterns of gene expression, color morph-specific gene expression, and color morph-specific gene variants.Joyner Open Access Publishing Support Fun

    Kinome Profiling Identifies Druggable Targets for Novel Human Cytomegalovirus (HCMV) Antivirals

    Get PDF
    Human cytomegalovirus (HCMV) is a significant cause of disease in immune-compromised adults and immune naïve newborns. No vaccine exists to prevent HCMV infection, and current antiviral therapies have toxic side effects that limit the duration and intensity of their use. There is thus an urgent need for new strategies to treat HCMV infection. Repurposing existing drugs as antivirals is an attractive approach to limit the time and cost of new antiviral drug development. Virus-induced changes in infected cells are often driven by changes in cellular kinase activity, which led us to hypothesize that defining the complement of kinases (the kinome), whose abundance or expression is altered during infection would identify existing kinase inhibitors that could be repurposed as new antivirals. To this end, we applied a kinase capture technique, multiplexed kinase inhibitor bead-mass spectrometry (MIB-MS) kinome, to quantitatively measure perturbations in >240 cellular kinases simultaneously in cells infected with a laboratory-adapted (AD169) or clinical (TB40E) HCMV strain. MIB-MS profiling identified time-dependent increases and decreases in MIB binding of multiple kinases including cell cycle kinases, receptor tyrosine kinases, and mitotic kinases. Based on the kinome data, we tested the antiviral effects of kinase inhibitors and other compounds, several of which are in clinical use or development. Using a novel flow cytometry-based assay and a fluorescent reporter virus we identified three compounds that inhibited HCMV replication with IC 50 values of 3 log decrease in virus replication. These results show the utility of MIB-MS kinome profiling for identifying existing kinase inhibitors that can potentially be repurposed as novel antiviral drugs

    N6-methyladenosine contributes to cellular phenotype in a genetically-defined model of breast cancer progression

    Get PDF
    The mRNA modification N6-methyladenosine (m6A) is involved in many post-transcriptional regulatory processes including mRNA stability and translational efficiency. However, it is also imperative to correlate these processes with phenotypic outputs during cancer progression. Here we report that m6A levels are significantly decreased in genetically-defined immortalized and oncogenically-transformed human mammary epithelial cells (HMECs), as compared with their primary cell predecessor. Furthermore, the m6A methyltransferase (METTL3) is decreased and the demethylase (ALKBH5) is increased in the immortalized and transformed cell lines, providing a possible mechanism for this basal change in m6A levels. Although the immortalized and transformed cells showed lower m6A levels than their primary parental cell line, overexpression of METTL3 and METTL14, or ALKBH5 knockdown to increase m6A levels in transformed cells increased proliferation and migration. Remarkably, these treatments had little effect on the immortalized cells. Together, these results suggest that m6A modification may be downregulated in immortalized cells as a brake against malignant progression. Finally, we found that m6A levels in the immortalized and transformed cells increased in response to hypoxia without corresponding changes in METTL3, METTL14 or ALKBH5 expression, suggesting a novel pathway for regulation of m6A levels under stress.ECU Open Access Publishing Support Fun

    Identification and mechanistic basis of non-ACE2 blocking neutralizing antibodies from COVID-19 patients with deep RNA sequencing and molecular dynamics simulations

    Get PDF
    Variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continue to cause disease and impair the effectiveness of treatments. The therapeutic potential of convergent neutralizing antibodies (NAbs) from fully recovered patients has been explored in several early stages of novel drugs. Here, we identified initially elicited NAbs (Ig Heavy, Ig lambda, Ig kappa) in response to COVID-19 infection in patients admitted to the intensive care unit at a single center with deep RNA sequencing (>100 million reads) of peripheral blood as a diagnostic tool for predicting the severity of the disease and as a means to pinpoint specific compensatory NAb treatments. Clinical data were prospectively collected at multiple time points during ICU admission, and amino acid sequences for the NAb CDR3 segments were identified. Patients who survived severe COVID-19 had significantly more of a Class 3 antibody (C135) to SARS-CoV-2 compared to non-survivors (15059.4 vs. 1412.7, p = 0.016). In addition to highlighting the utility of RNA sequencing in revealing unique NAb profiles in COVID-19 patients with different outcomes, we provided a physical basis for our findings via atomistic modeling combined with molecular dynamics simulations. We established the interactions of the Class 3 NAb C135 with the SARS-CoV-2 spike protein, proposing a mechanistic basis for inhibition via multiple conformations that can effectively prevent ACE2 from binding to the spike protein, despite C135 not directly blocking the ACE2 binding motif. Overall, we demonstrate that deep RNA sequencing combined with structural modeling offers the new potential to identify and understand novel therapeutic(s) NAbs in individuals lacking certain immune responses due to their poor endogenous production. Our results suggest a possible window of opportunity for administration of such NAbs when their full sequence becomes available. A method involving rapid deep RNA sequencing of patients infected with SARS-CoV-2 or its variants at the earliest infection time could help to develop personalized treatments using the identified specific NAbs

    Rectal artemisinins for malaria: a review of efficacy and safety from individual patient data in clinical studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rectal administration of artemisinin derivatives has potential for early treatment for severe malaria in remote settings where injectable antimalarial therapy may not be feasible. Preparations available include artesunate, artemisinin, artemether and dihydroartemisinin. However each may have different pharmacokinetic properties and more information is needed to determine optimal dose and comparative efficacy with each another and with conventional parenteral treatments for severe malaria.</p> <p>Methods</p> <p>Individual patient data from 1167 patients in 15 clinical trials of rectal artemisinin derivative therapy (artesunate, artemisinin and artemether) were pooled in order to compare the rapidity of clearance of <it>Plasmodium falciparum </it>parasitaemia and the incidence of reported adverse events with each treatment. Data from patients who received comparator treatment (parenteral artemisinin derivative or quinine) were also included. Primary endpoints included percentage reductions in parasitaemia at 12 and 24 hours. A parasite reduction of >90% at 24 hours was defined as parasitological success.</p> <p>Results</p> <p>Artemisinin and artesunate treatment cleared parasites more rapidly than parenteral quinine during the first 24 hours of treatment. A single higher dose of rectal artesunate treatment was five times more likely to achieve >90% parasite reductions at 24 hours than were multiple lower doses of rectal artesunate, or a single lower dose administration of rectal artemether.</p> <p>Conclusion</p> <p>Artemisinin and artesunate suppositories rapidly eliminate parasites and appear to be safe. There are less data on artemether and dihydroartemisinin suppositories. The more rapid parasite clearance of single high-dose regimens suggests that achieving immediate high drug concentrations may be the optimal strategy.</p

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Intramuscular Administration of a Synthetic CpG-Oligodeoxynucleotide Modulates Functional Responses of Neutrophils of Neonatal Foals

    Get PDF
    Neutrophils play an important role in protecting against infection. Foals have age-dependent deficiencies in neutrophil function that may contribute to their predisposition to infection. Thus, we investigated the ability of a CpG-ODN formulated with Emulsigen to modulate functional responses of neutrophils in neonatal foals. Eighteen foals were randomly assigned to receive either a CpG-ODN with Emulsigen (N = 9) or saline intramuscularly at ages 1 and 7 days. At ages 1, 3, 9, 14, and 28, blood was collected and neutrophils were isolated from each foal. Neutrophils were assessed for basal and Rhodococcus equi-stimulated mRNA expression of the cytokines interferon-γ (IFN-γ), interleukin (IL)-4, IL-6, and IL-8 using real-time PCR, degranulation by quantifying the amount of β-D glucuronidase activity, and reactive oxygen species (ROS) generation using flow cytometry. In vivo administration of the CpG-ODN formulation on days 1 and 7 resulted in significantly (P<0.05) increased IFN-γ mRNA expression by foal neutrophils on days 3, 9, and 14. Degranulation was significantly (P<0.05) lower for foals in the CpG-ODN-treated group than the control group at days 3 and 14, but not at other days. No effect of treatment on ROS generation was detected. These results indicate that CpG-ODN administration to foals might improve innate and adaptive immune responses that could protect foals against infectious diseases and possibly improve responses to vaccination.The open access fee for this work was funded through the Texas A&M University Open Access to Knowledge (OAK) Fund
    corecore