6,775 research outputs found

    The Evolution of Bias - Generalized

    Full text link
    Fry (1996) showed that galaxy bias has the tendency to evolve towards unity, i.e. in the long run, the galaxy distribution tends to trace that of matter. Generalizing slightly Fry's reasoning, we show that his conclusion remains valid in theories of modified gravity (or equivalently, complex clustered dark energy). This is not surprising: as long as both galaxies and matter are subject to the same force, dynamics would drive them towards tracing each other. This holds, for instance, in theories where both galaxies and matter move on geodesics. This relaxation of bias towards unity is tempered by cosmic acceleration, however: the bias tends towards unity but does not quite make it, unless the formation bias were close to unity. Our argument is extended in a straightforward manner to the case of a stochastic or nonlinear bias. An important corollary is that dynamical evolution could imprint a scale dependence on the large scale galaxy bias. This is especially pronounced if non-standard gravity introduces new scales to the problem: the bias at different scales relaxes at different rates, the larger scales generally more slowly and retaining a longer memory of the initial bias. A consistency test of the current (general relativity + uniform dark energy) paradigm is therefore to look for departure from a scale independent bias on large scales. A simple way is to measure the relative bias of different populations of galaxies which are at different stages of bias relaxation. Lastly, we comment on the possibility of directly testing the Poisson equation on cosmological scales, as opposed to indirectly through the growth factor.Comment: 8 pages, 2 figures. References added. Accepted for publication in Physical Review

    Ecological boundaries and constraints on viable eco-evolutionary pathways

    Get PDF
    Evolutionary dynamics are subject to constraints ranging from limitations on what is physically possible to limitations on the pathways that evolution can take. One set of evolutionary constraints, known as ‘demographic constraints’, constrain what can occur evolutionarily due to the demographic or dynamical consequences of evolution leading to conditions that make populations susceptible to extinction. These demographic constraints can limit the strength of selection or the rates of environmental change populations can experience while remaining extant and the trait values a population can express. Here we further hypothesize that the population demographic and dynamic consequences of evolution also can constrain the eco-evolutionary pathways that populations can traverse by defining ecological boundaries represented by areas of likely extinction. We illustrate this process using a model of predator evolution. Our results show that the populations that persist over time tend to be those whose eco-evolutionary dynamics have avoided ecological boundaries representing areas of likely extinction due to stochastic deviations from a deterministic eco-evolutionary expectation. We term this subset of persisting pathways viable eco-evolutionary pathways. The potential existence of ecological boundaries constraining evolutionary pathways has important implications for predicting evolutionary dynamics, interpreting past evolution, and understanding the role of stochasticity and ecological constraints on eco-evolutionary dynamics

    Ecological boundaries and constraints on viable eco-evolutionary pathways

    Get PDF
    Evolutionary dynamics are subject to constraints ranging from limitations on what is physically possible to limitations on the pathways that evolution can take. One set of evolutionary constraints, known as ‘demographic constraints’, constrain what can occur evolutionarily due to the demographic or dynamical consequences of evolution leading to conditions that make populations susceptible to extinction. These demographic constraints can limit the strength of selection or the rates of environmental change populations can experience while remaining extant and the trait values a population can express. Here we further hypothesize that the population demographic and dynamic consequences of evolution also can constrain the eco-evolutionary pathways that populations can traverse by defining ecological boundaries represented by areas of likely extinction. We illustrate this process using a model of predator evolution. Our results show that the populations that persist over time tend to be those whose eco-evolutionary dynamics have avoided ecological boundaries representing areas of likely extinction due to stochastic deviations from a deterministic eco-evolutionary expectation. We term this subset of persisting pathways viable eco-evolutionary pathways. The potential existence of ecological boundaries constraining evolutionary pathways has important implications for predicting evolutionary dynamics, interpreting past evolution, and understanding the role of stochasticity and ecological constraints on eco-evolutionary dynamics

    Predator-Dependent Functional Responses Alter the Coexistence and Indirect Effects among Prey that Share a Predator

    Get PDF
    Predator functional responses describe predator feeding rates as a function of prey abundance and are central to pred-ator–prey theory. Despite ample evidence that functional responses also depend on predator abundance, theory incor-porating predator-dependent functional responses has focused almost exclusively on specialist predator–prey pairs or linear food chains. This leaves a large gap in our knowledge as many predators feed on multiple prey, and in so doing, generate indirect effects among prey that can alter their coexistence. Here we investigate how predator-dependent functional responses in a one predator–two prey model alter the coexistence among prey and their net effects on one another. We use two different functional response forms (the Beddington–DeAngelis and Crowley–Martin functional responses) and consider situations in which the prey do not directly interact and in which they directly compete with one another. We find that predator dependence can facilitate, hinder, or have no effect on prey coexistence depending on whether prey compete directly and the role of predation in mediating coexistence among the prey in the absence of predator dependence. We also show that the negative net effects of prey on one another are generally weakened by predator dependence and can become positive under the Crowley–Martin functional response. Together, these results suggest that predator dependence may have widespread effects on ecological communities by altering the coexistence among prey species and the strength and signs of the interactions among them

    Coloration in the polymorphic frog Oophaga pumilio associates with level of aggressiveness in intraspecific and interspecific behavioral interactions

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. Intraspecific morphological variation may correspond to behavioral variation that helps determine the nature of species interactions. Color variation among populations of variably toxic organisms has been shown to associate with alternative anti-predator behaviors. However, the effects of these alternative behavioral tendencies on the outcomes of interspecific interactions other than predator–prey remain largely unexplored. We investigated how coloration and body size variation in Oophaga pumilio, one of the most phenotypically diverse amphibians known, associated with territorial aggressiveness and how this association influenced the outcome of agonistic male–male interactions with conspecifics and heterospecifics of two sympatric species (Andinobates claudiae and Phyllobates lugubris). Irrespective of body size, resident frogs from more conspicuous, red-colored O. pumilio populations responded to same-morph conspecifics and P. lugubris more quickly and exhibited more aggressive behaviors and more energetically expensive behaviors than resident frogs from green populations under these same treatments. Furthermore, red-colored resident frogs dominated most of the interactions in which they were involved, whereas green residents dominated only a few of the interactions, despite their status as residents. Because conspecific and heterospecific intruders did not behave more aggressively toward red resident frogs, aggressiveness of red residents does not appear to be a response to higher aggression being directed toward them. These results suggest that coloration in O. pumilio is a good indicator of aggressiveness that associates with the outcome of intraspecific and some interspecific behavioral male–male interactions, providing support for a positive association among anti-predator traits, agonistic behavior, and dominance in both intraspecific and interspecific, intraguild interactions
    • …
    corecore