928 research outputs found

    Chronic rhinosinusitis with nasal polyps in older adults : clinical presentation, pathophysiology, and comorbidity

    No full text
    Purpose of Review Chronic rhinosinusitis and nasal polyps (CRSwNP) is a common condition that significantly affects patients' life. This work aims to provide an up-to-date overview of CRSwNP in older adults, focusing on its aging-related clinical presentations, pathophysiology, and comorbidity associations including asthma. Recent Findings Recent large population-based studies using nasal endoscopy have shown that CRSwNP is a mostly late-onset disease. Age-related changes in physiologic functions, including nasal epithelial barrier dysfunction, may underlie the incidence and different clinical presentations of CRSwNP in older adults. However, there is still a paucity of evidence on the effect of aging on phenotypes and endotypes of CRSwNP. Meanwhile, late-onset asthma is a major comorbid condition in patients with CRSwNP; they frequently present with type 2 inflammatory signatures that are refractory to conventional treatments when they are comorbid. However, as they are more commonly non-atopic, causative factors other than classical atopic sensitization, such as Staphylococcus aureus specific IgE sensitization, are suggested to drive the type 2 inflammation. There are additional comorbidity associations in older patients with CRSwNP, including those with chronic otitis media and head and neck malignancy. Age is a major determinant for the incidence and clinical presentations of CRSwNP. Given the heterogeneity in phenotypes and endotypes, longitudinal investigations are warranted to elucidate the effects of aging on CRSwNP

    Quantitative measurements of C-reactive protein using silicon nanowire arrays

    Get PDF
    A silicon nanowire-based sensor for biological application showed highly desirable electrical responses to either pH changes or receptor-ligand interactions such as protein disease markers, viruses, and DNA hybridization. Furthermore, because the silicon nanowire can display results in real-time, it may possess superior characteristics for biosensing than those demonstrated in previously studied methods. However, despite its promising potential and advantages, certain process-related limitations of the device, due to its size and material characteristics, need to be addressed. In this article, we suggest possible solutions. We fabricated silicon nanowire using a top-down and low cost micromachining method, and evaluate the sensing of molecules after transfer and surface modifications. Our newly designed method can be used to attach highly ordered nanowires to various substrates, to form a nanowire array device, which needs to follow a series of repetitive steps in conventional fabrication technology based on a vapor-liquid-solid (VLS) method. For evaluation, we demonstrated that our newly fabricated silicon nanowire arrays could detect pH changes as well as streptavidin-biotin binding events. As well as the initial proof-of-principle studies, C-reactive protein binding was measured: electrical signals were changed in a linear fashion with the concentration (1 fM to 1 nM) in PBS containing 1.37 mM of salts. Finally, to address the effects of Debye length, silicon nanowires coupled with antigen proteins underwent electrical signal changes as the salt concentration changed

    A Microfluidic System for Stable and Continuous EEG Monitoring from Multiple Larval Zebrafish

    Get PDF
    Along with the increasing popularity of larval zebrafish as an experimental animal in the fields of drug screening, neuroscience, genetics, and developmental biology, the need for tools to deal with multiple larvae has emerged. Microfluidic channels have been employed to handle multiple larvae simultaneously, even for sensing electroencephalogram (EEG). In this study, we developed a microfluidic chip capable of uniform and continuous drug infusion across all microfluidic channels during EEG recording. Owing to the modular design of the microfluidic channels, the number of animals under investigation can be easily increased. Using the optimized design of the microfluidic chip, liquids could be exchanged uniformly across all channels without physically affecting the larvae contained in the channels, which assured a stable environment maintained all the time during EEG recording, by eliminating environmental artifacts and leaving only biological effects to be seen. To demonstrate the usefulness of the developed system in drug screening, we continuously measured EEG from four larvae without and with pentylenetetrazole application, up to 60 min. In addition, we recorded EEG from valproic acid (VPA)-treated zebrafish and demonstrated the suppression of seizure by VPA. The developed microfluidic system could contribute to the mass screening of EEG for drug development to treat neurological disorders such as epilepsy in a short time, owing to its handy size, cheap fabrication cost, and the guaranteed uniform drug infusion across all channels with no environmentally induced artifacts. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.1

    High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings

    Get PDF
    AbstractBackground: The movement of lipids between membranes is aided by lipid-transfer proteins (LTPs). Some LTPs exhibit broad specificity, transferring many classes of lipids, and are termed non-specific LTPs (ns-LTPs). Despite their apparently similar mode of action, no sequence homology exists between mammalian and plant ns-LTPs and no three-dimensional structure has been reported for any plant ns-LTP.Results We have determined the crystal structure of ns-LTP from maize seedlings by multiple isomorphous replacement and refined the structure to 1.9 å resolution. The protein comprises a single compact domain with four α-helices and a long C-terminal region. The eight conserved cysteines form four disulfide bridges (assigned as Cys4–Cys52, Cys14–Cys29, Cys30–Cys75, and Cys50–Cys89) resolving the ambiguity that remained from the chemical determination of pairings in the homologous protein from castor bean. Two of the bonds, Cys4–Cys52 and Cys50–Cys89, differ from what would have been predicted from sequence alignment with soybean hydrophobic protein. The complex between maize ns-LTP and hexadecanoate (palmitate) has also been crystallized and its structure refined to 1.8 å resolution.Conclusion The fold of maize ns-LTP places it in a new category of all-α-type structure, first described for soybean hydrophobic protein. In the absence of a bound ligand, the protein has a tunnel-like hydrophobic cavity, which is large enough to accommodate a long fatty acyl chain. In the structure of the complex with palmitate, most of the acyl chain is buried inside this hydrophobic cavity

    Functional enhancement of neuronal cell behaviors and differentiation by elastin-mimetic recombinant protein presenting Arg-Gly-Asp peptides

    Get PDF
    Background: Integrin-mediated interaction of neuronal cells with extracellular matrix (ECM) is important for the control of cell adhesion, morphology, motility, and differentiation in both in vitro and in vivo systems. Arg-Gly-Asp (RGD) sequence is one of the most potent integrin-binding ligand found in many native ECM proteins. An elastin-mimetic recombinant protein, TGPG[VGRGD(VGVPG)6]20WPC, referred to as [RGD-V6]20, contains multiple RGD motifs to bind cell-surface integrins. This study aimed to investigate how surface-adsorbed recombinant protein can be used to modulate the behaviors and differentiation of neuronal cells in vitro. For this purpose, biomimetic ECM surfaces were prepared by isothermal adsorption of [RGD-V6]20 onto the tissue culture polystyrene (TCPS), and the effects of protein-coated surfaces on neuronal cell adhesion, spreading, migration, and differentiation were quantitatively measured using N2a neuroblastoma cells.Results: The [RGD-V6]20 was expressed in E. coli and purified by thermally-induced phase transition. N2a cell attachment to either [RGD-V6]20 or fibronectin followed hyperbolic binding kinetics saturating around 2 μM protein concentration. The apparent maximum cell binding to [RGD-V6]20 was approximately 96% of fibronectin, with half-maximal adhesion on [RGD-V6]20 and fibronectin occurring at a coating concentration of 2.4 × 10-7 and 1.4 × 10-7 M, respectively. The percentage of spreading cells was in the following order of proteins: fibronectin (84.3% ± 6.9%) > [RGD-V6]20 (42.9% ± 6.5%) > [V7]20 (15.5% ± 3.2%) > TCPS (less than 10%). The migration speed of N2a cells on [RGD-V6]20 was similar to that of cells on fibronectin. The expression of neuronal marker proteins Tuj1, MAP2, and GFAP was approximately 1.5-fold up-regulated by [RGD-V6]20 relative to TCPS. Moreover, by the presence of both [RGD-V6]20 and RA, the expression levels of NSE, TuJ1, NF68, MAP2, and GFAP were significantly elevated.Conclusion: We have shown that an elastin-mimetic protein consisting of alternating tropoelastin structural domains and cell-binding RGD motifs is able to stimulate neuronal cell behaviors and differentiation. In particular, adhesion-induced neural differentiation is highly desirable for neural development and nerve repair. In this context, our data emphasize that the combination of biomimetically engineered recombinant protein and isothermal adsorption approach allows for the facile preparation of bioactive matrix or coating for neural tissue regeneration. © 2012 Jeon et al.; licensee BioMed Central Ltd.1

    Repeated Gene Transfection Impairs the Engraftment of Transplanted Porcine Neonatal Pancreatic Cells

    Get PDF
    BackgroundPreviously, we reported that neonatal porcine pancreatic cells transfected with hepatocyte growth factor (HGF) gene in an Epstein-Barr virus (EBV)-based plasmid (pEBVHGF) showed improved proliferation and differentiation compared to those of the control. In this study, we examined if pancreatic cells transfected repeatedly with pEBVHGF can be successfully grafted to control blood glucose in a diabetes mouse model.MethodsNeonatal porcine pancreatic cells were cultured as a monolayer and were transfected with pEBVHGF every other day for a total of three transfections. The transfected pancreatic cells were re-aggregated and transplanted into kidney capsules of diabetic nude mice or normal nude mice. Blood glucose level and body weight were measured every other day after transplantation. The engraftment of the transplanted cells and differentiation into beta cells were assessed using immunohistochemistry.ResultsRe-aggregation of the pancreatic cells before transplantation improved engraftment of the cells and facilitated neovascularization of the graft. Right before transplantation, pancreatic cells that were transfected with pEBVHGF and then re-aggregated showed ductal cell marker expression. However, ductal cells disappeared and the cells underwent fibrosis in a diabetes mouse model two to five weeks after transplantation; these mice also did not show controlled blood glucose levels. Furthermore, pancreatic cells transplanted into nude mice with normal blood glucose showed poor graft survival regardless of the type of transfected plasmid (pCEP4, pHGF, or pEBVHGF).ConclusionFor clinical application of transfected neonatal porcine pancreatic cells, further studies are required to develop methods of overcoming the damage for the cells caused by repeated transfection and to re-aggregate them into islet-like structures

    Proximity-Directed Labeling Reveals a New Rapamycin-Induced Heterodimer of FKBP25 and FRB in Live Cells

    Get PDF
    Mammalian target of rapamycin (mTOR) signaling is a core pathway in cellular metabolism, and control of the mTOR pathway by rapamycin shows potential for the treatment of metabolic diseases. In this study, we employed a new proximity biotin-labeling method using promiscuous biotin ligase (pBirA) to identify unknown elements in the rapamycin-induced interactome on the FK506-rapamycin binding (FRB) domain in living cells. FKBP25 showed the strongest biotin labeling by FRB-pBirA in the presence of rapamycin. Immunoprecipitation and immunofluorescence experiments confirmed that endogenous FKBP25 has a rapamycin-induced physical interaction with the FRB domain. Furthermore, the crystal structure of the ternary complex of FRB-rapamycin-FKBP25 was determined at 1.67-angstrom resolution. In this crystal structure we found that the conformational changes of FRB generate a hole where there is a methionine-rich space, and covalent metalloid coordination was observed at C2085 of FRB located at the bottom of the hole. Our results imply that FKBP25 might have a unique physiological role related to metallomics in mTOR signaling.ope

    Targeting Mannitol Metabolism as an Alternative Antimicrobial Strategy Based on the Structure-Function Study of Mannitol-1-Phosphate Dehydrogenase in Staphylococcus aureus

    Get PDF
    Mannitol-1-phosphate dehydrogenase (M1PDH) is a key enzyme in Staphylococcus aureus mannitol metabolism, but its roles in pathophysiological settings have not been established. We performed comprehensive structure-function analysis of M1PDH from S. aureus USA300, a strain of community-associated methicillin-resistant S. aureus, to evaluate its roles in cell viability and virulence under pathophysiological conditions. On the basis of our results, we propose M1PDH as a potential antibacterial target. In vitro cell viability assessment of ΔmtlD knockout and complemented strains confirmed that M1PDH is essential to endure pH, high-salt, and oxidative stress and thus that M1PDH is required for preventing osmotic burst by regulating pressure potential imposed by mannitol. The mouse infection model also verified that M1PDH is essential for bacterial survival during infection. To further support the use of M1PDH as an antibacterial target, we identified dihydrocelastrol (DHCL) as a competitive inhibitor of S. aureus M1PDH (SaM1PDH) and confirmed that DHCL effectively reduces bacterial cell viability during host infection. To explain physiological functions of SaM1PDH at the atomic level, the crystal structure of SaM1PDH was determined at 1.7-Å resolution. Structure-based mutation analyses and DHCL molecular docking to the SaM1PDH active site followed by functional assay identified key residues in the active site and provided the action mechanism of DHCL. Collectively, we propose SaM1PDH as a target for antibiotic development based on its physiological roles with the goals of expanding the repertory of antibiotic targets to fight antimicrobial resistance and providing essential knowledge for developing potent inhibitors of SaM1PDH based on structure-function studies.IMPORTANCE Due to the shortage of effective antibiotics against drug-resistant Staphylococcus aureus, new targets are urgently required to develop next-generation antibiotics. We investigated mannitol-1-phosphate dehydrogenase of S. aureus USA300 (SaM1PDH), a key enzyme regulating intracellular mannitol levels, and explored the possibility of using SaM1PDH as a target for developing antibiotic. Since mannitol is necessary for maintaining the cellular redox and osmotic potential, the homeostatic imbalance caused by treatment with a SaM1PDH inhibitor or knockout of the gene encoding SaM1PDH results in bacterial cell death through oxidative and/or mannitol-dependent cytolysis. We elucidated the molecular mechanism of SaM1PDH and the structural basis of substrate and inhibitor recognition by enzymatic and structural analyses of SaM1PDH. Our results strongly support the concept that targeting of SaM1PDH represents an alternative strategy for developing a new class of antibiotics that cause bacterial cell death not by blocking key cellular machinery but by inducing cytolysis and reducing stress tolerance through inhibition of the mannitol pathway
    corecore