7,834 research outputs found

    A Tool to Assist in the Analysis of Gaze Patterns in Upper Limb Prosthetic Use

    Get PDF
    Gaze tracking, where the point of regard of a subject is mapped onto the image of the scene the subject sees, can be employed to study the visual attention of the users of prosthetic hands. It can show whether the user is pays greater attention to the actions of their prosthetic hand as they use it to perform manipulation tasks, compared with the general population. Conventional analysis of the video data requires a human operator to identify the key areas of interest in every frame of the video data. Computer vision techniques can assist with this process, but a fully automatic systems requires large training sets. Prosthetic investigations tend to be limited in numbers. However, if the assessment task is well controlled, it is possible to make a much simpler system that uses initial input from an operator to identify the areas of interest and then the computer tracks the objects throughout the task. The tool described here, employs colour separation and edge detection on images of the visual field to identify the objects to be tracked. To simplify the computer's task further, this test uses the Southampton Hand Assessment Procedure (SHAP), to define the activity spatially and temporarily, reducing the search space for the computer. The work reported here is the development a software tool capable of identifying and tracking the Points of Regard and Areas of Interest, throughout an activity with minimum human operator input. Gaze was successfully tracked for fourteen unimpaired subjects, which was compared with the gaze of four users of myoelectric hands. The SHAP cutting task is described and the differences in attention observed with a greater number of shorter fixations by the prosthesis users compared to unimpaired subjects. There was less looking ahead to the next phase of the task by the prosthesis users

    From design to research: Upper limb prosthetic research and development in Canada, 1960-2000

    Get PDF
    This paper examines the history of the research and development (R&D) of myoelectric upper limb prosthesis in Canada from 1960 to 2000. It focuses on two of the prosthetic research and training units (PRTUs) that were created and funded by the federal government as a result of the Thalidomide tragedy: the Rehabilitation Centre at the Ontario Crippled Children’s Centre (OCCC) and successor organizations, and the University of New Brunswick’s (UNB) Institute of Biomedical Engineering (the Institute or IBME). Both developed commercial systems for myoelectrically controlled arms and hands. We argue that, in contrast to the common view that research in universities and public research institutions has increasingly moved away from basic problems and to product development and commercialization over the period, research in this field has moved in the opposite direction. We explore these cases in detail and examine the forces at work in this change from a design-oriented approach to one that became research intensive

    The use of underactuation in prosthetic grasping

    Get PDF
    Underactuation as a method of driving prosthetic hands has a long history. The pragmatic requirements of such a device to be light enough to be worn and used regularly have meant that any multi degree of freedom prosthetic hand must have fewer actuators than the usable degrees of freedom. Aesthetics ensures that while the hand needs five fingers, five actuators have considerable mass, and only in recent years has it even been possible to construct a practical anthropomorphic hand with five motors. Thus there is an important trade off as to which fingers are driven, and which joints on which fingers are actuated, and how the forces are distributed to create a functional device. This paper outlines some of the historical solutions created for this problem and includes those designs of recent years that are now beginning to be used in the commercial environment. <br><br> <i>This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010), 19 August 2010, Montréal, Canada.</i&gt

    Report of the working group on the measurement of triple gauge boson couplings

    Get PDF
    The working group discussed several aspects of triple gauge coupling analysis viewed in the light of experiences with the first high energy data recorded at energies above the W pair threshold. Some analysis methods were reviewed briefly, and consideration given to better ways of characterising the data. The measurement of CP violating parameters was discussed. Results were prepared to further quantify the precision attainable on anaomalous couplings in the four-quark channel using jet-charge methods, and finally the trade off between maximum LEP energy-vs-luminosity was quantified.The working group discussed several aspects of triple gauge coupling analysis viewed in the light of experiences with the first high energy data recorded at energies above the W pair threshold. Some analysis methods were reviewed briefly, and consideration given to better ways of characterising the data. The measurement of CP violating parameters was discussed. Results were prepared to further quantify the precision attainable on anaomalous couplings in the four-quark channel using jet-charge methods, and finally the trade off between maximum LEP energy-vs-luminosity was quantified

    Upper limb activity in myoelectric prosthesis users is biased towards the intact limb and appears unrelated to goal-directed task performance

    Get PDF
    Studies of the effectiveness of prosthetic hands involve assessing user performance on functional tasks in the lab/clinic, sometimes combined with self-report of real-world use. In this paper we compare real-world upper limb activity between a group of 20 myoelectric prosthesis users and 20 anatomically intact adults. Activity was measured from wrist-worn accelerometers over a 7-day period. The temporal patterns in upper limb activity are presented and the balance of activity between the two limbs quantified. We also evaluated the prosthesis users’ performance on a goal-directed task, characterised using measures including task success rate, completion time, gaze behaviour patterns, and kinematics (e.g. variability and patterns in hand aperture). Prosthesis users were heavily reliant on their intact limb during everyday life, in contrast to anatomically intact adults who demonstrated similar reliance on both upper limbs. There was no significant correlation between the amount of time a prosthesis was worn and reliance on the intact limb, and there was no significant correlation between either of these measures and any of the assessed kinematic and gaze-related measures of performance. We found participants who had been prescribed a prosthesis for longer to demonstrate more symmetry in their overall upper limb activity, although this was not reflected in the symmetry of unilateral limb use. With the exception of previously published case studies, this is the first report of real world upper limb activity in myoelectric prosthesis users and confirms the widely held belief that users are heavily reliant on their intact limb

    The design, construction and performance of the MICE scintillating fibre trackers

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 ElsevierCharged-particle tracking in the international Muon Ionisation Cooling Experiment (MICE) will be performed using two solenoidal spectrometers, each instrumented with a tracking detector based on diameter scintillating fibres. The design and construction of the trackers is described along with the quality-assurance procedures, photon-detection system, readout electronics, reconstruction and simulation software and the data-acquisition system. Finally, the performance of the MICE tracker, determined using cosmic rays, is presented.This work was supported by the Science and Technology Facilities Council under grant numbers PP/E003214/1, PP/E000479/1, PP/E000509/1, PP/E000444/1, and through SLAs with STFC-supported laboratories. This work was also supportedby the Fermi National Accelerator Laboratory, which is operated by the Fermi Research Alliance, under contract No. DE-AC02-76CH03000 with the U.S. Department of Energy, and by the U.S. National Science Foundation under grants PHY-0301737,PHY-0521313, PHY-0758173 and PHY-0630052. The authors also acknowledge the support of the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan

    MICE: the Muon Ionization Cooling Experiment. Step I: First Measurement of Emittance with Particle Physics Detectors

    Get PDF
    The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented
    • 

    corecore