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1  Abstract 
Gaze tracking, where the point of regard of a subject is mapped onto the image of the scene 

the subject sees, can be employed to study the visual attention of the users of prosthetic 

hands. It can show whether the user is pays greater attention to the actions of their 

prosthetic hand as they use it to perform manipulation tasks, compared with the general 

population. Conventional analysis of the video data requires a human operator to identify 

the key areas of interest in every frame of the video data. Computer vision techniques can 

assist with this process, but a fully automatic systems requires large training sets. Prosthetic 

investigations tend to be limited in numbers. However, if the assessment task is well 

controlled, it is possible to make a much simpler system that uses initial input from an 

operator to identify the areas of interest and then the computer tracks the objects 

throughout the task. The tool described here, employs colour separation and edge 

detection on images of the visual field to identify the objects to be tracked. To simplify the 

computer's task further, this test uses the Southampton Hand Assessment Procedure 

(SHAP), to define the activity spatially and temporarily, reducing the search space for the 

computer. The work reported here is the development a software tool capable of 

identifying and tracking the Points of Regard and Areas of Interest, throughout an activity 

with minimum human operator input. Gaze was successfully tracked for fourteen 

unimpaired subjects, which was compared with the gaze of four users of myoelectric hands. 

The SHAP cutting task is described and the differences in attention observed with a greater 

number of shorter fixations by the prosthesis users compared to unimpaired subjects. 

There was less looking ahead to the next phase of the task by the prosthesis users.  

 

2  Introduction 
The operation of an upper limb prosthesis requires the users to control their device using 

limited feedback paths [1]. Skill in control is attained as the result of sustained practice and 

concentration on the part of the user. One of the primary feedback paths used is vision. The 

hands remain in the view of the operator most of the time and the high quality information 

supplied about the hand's position and grasp is crucial to successful operation. In contrast, 

natural hand control is achieved using many different modalities [2] and the hand is generally 
in only in the person's peripheral vision [3].  

 

Gaze tracking is an established technology, in its portable form it uses cameras mounted on 

the head to record eye movement and the visual field. A computer maps the focus of the 

gaze onto the scene in front of the subject. The output of the system is a video of visual field 
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with the foveal point superimposed upon it. This provides information about the direction 

of the gaze. The visual attention can be inferred from this, by observing where the subject 

looks and for how long. The technology has allowed exploration of understanding of the 

role of gaze in reaching, manipulation [3,4], sports [5], and skills acquisition [4]. Other eye 

tracking systems can be used to control computer cursors, but as they rest on the desk 

they have less use in this application where the subject needs to move about [6]. More 

recently, this exploration has moved into the investigation of prosthetic grasping [7,8]. For 

natural grasping the gaze tends to anticipate the hand, looking to where the hand will be, 

and moving on before the hand has grasped the object, to where the hand will go next. In 

prosthetic manipulation it has been shown that the users tend to follow the hand closely not 

looking ahead to the next target until the current one is acquired [7,8].  

 

Employing a gaze tracker is the first step towards understanding how prostheses users look 

at a task involving their prosthesis. Potentially will allow improvement in the design of the 

control of prosthetic hands while reducing the cognitive burden. Analysis of the recorded 
scene requires human intervention. Generally, it is a human operator who goes through the 

video data frame by frame. They must identify and mark the key items and events in the 

visual field. This is clearly time consuming and dependant on the skills of the operator. 

Computer vision techniques are available to interpret the scene, but machine learning needs 

to be able to segment the data into significant actions and aggregate real, noisy data into 

statistically similar groups. Thus it needs copious amounts of data to learn from [9]. In 

contrast, similar to the development of low cost motion tracking systems, (such as the 

Kinect for home gaming), it is possible to create a simplified system that will speed up the 

image analysis without the expense of highly sophisticated computers and software [10,11].  

 

This paper describes a system designed speed up the process of processing eye tracking data 

for the analysis of prosthetic hand function. The program uses a standardised set up, 

including an activity of daily living tasks. A computer is able to identify the key areas of 

interest and track them in the visual field throughout the activity, with minimal human 

intervention. It is believed this is the first time this assisted analysis has been created for this 

application.  

 

2.1  Background 
The study of gaze behaviour and visual attention for upper-limb activities of daily living 
(ADLs) has been conducted since the technology became compact enough to make field 

studies practical [12]. More recently, it has garnered the attention of the prosthetics field, 

with an initiative from three groups [7,8,13]. This was later expanded to the wider 

community [14,15,16]. All of these studies have required hand labelling of the video data by 

a skilled operator. The overall goal of this program of study was to assess visual attention of 

a prosthesis user when faced with a new task, and to gauge it's influence of the usability of 

upper limb prostheses by observing the eye gaze patterns of users of prosthetic hands. The 

aim of the project detailed herein was a first step; to develop a method for assessing visual 

attention with the minimal human intervention.  

 

In the commercial systems, the video data from cameras mounted on the head is combined 

by a computer to map the Point of Regard (PoR) onto the image field. One camera records 

the motion of the eye and uses the position of the pupil to derive the PoR. This is mapped 

on to the image taken by a second head mounted camera of the scene. Before use the 

system is calibrated.  
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Generally, to analyse the videos generated, the experimenter has to step through the video 

frame by frame, identifying items of interest and inputting them into a computer for 

numerical analysis. This is laborious and time consuming, it relies on human interpretation of 

the Areas of Interest (AoIs) in the scene and is dependent on the level of skill and attention 

of the observers [17]. Computer systems and image processing software are now able to 

analyse complex video images through forms of machine learning [18,19]. However, to 

achieve an adequate level of proficiency to be useful [9], the systems require many examples 

of the test data to train the system. Studies with prosthesis users rarely generate enough 

data to train an advanced machine learning model sufficiently. The number of repetitions 

each subject would have to perform is unrealistic. This project created a system that did not 

require the computer system to be that competent or need many examples to train the 

software. Instead, the software was designed to extract key items of interest from the video 

of the visual field, with the operator marking the first instance of a AoI and then the 

computer being able to track it in subsequent frames. The automatic identification was 

based on three details: The colour of the object, its shape and that an object cannot have 
moved far between successive frames. This approach has not been used previously for this 

sort of application.  

 

The project was not focused on generating new ideas and technology in the computer vision 

field, but to use existing tools to extract information. Thus an interface was created that 

used tools within Matlab (Mathworks, Natick, 1 Apple Hill Drive Natick, Massachusetts, 

USA) to extract sufficient information to assist in the identification of a range of points of 

interest in the visual field. Data processing and analysis used a combination of pre-existing 

Matlab functions and custom written routines.  

 

2.2  Assessment framework 
Assessment of complex activities is a compromise between extreme abstraction, (which is 

easy to measure but may not determine realistic results) and verisimilitude (which is highly 

variable and is hard to draw general conclusions about a population) [20]. For this 

application, an assessment form was chosen that controlled the task and the environment to 

assist the computer in tracking the task while ensuring it had clinical validity.  

 

While some experiments have employed simulated prosthesis users as subjects [7,14,21] 

and abstract tasks, for this study an assessment tool was chosen to allow for the 
measurements to be made while the routine users of prosthetic hands performed simulated 

Activities of Daily Living (ADLs). The Southampton Hand Assessment Procedure (SHAP) 

was chosen because it has qualities that make it particularly appropriate for this 

application [22]. SHAP is a tool validated for assessment of users of prosthetic hands. It 

measures the functional capabilities of the user and hand in combination [23]. All functional 

tests are a compromise between the practical (what can be achieved in the time, space and 

budget) and the accurate use of real world operations. SHAP uses a series of standardised 

tests based on tasks that were already proven to be repeatable and validated [24]. These 

tasks are timed by the operator as this too increases the reliability of the measurement [24]. 

A score is produced which is based on the Malhanobis distance of the times of the subject 

from a standardised set measurements. The overall score is out of 100, with scores above 

95 being the range for the general population. There are eight abstract tasks, (picking and 

placing abstract shapes) and fourteen simulated ADLs. The layout of the tasks are controlled 

by a form board. SHAP has been used in a wide range of conditions including prosthetic 

limbs [25,26,14] and grasp kinematics [27,28], (in conjunction with motion analysis systems).  
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A SHAP task is set up on the form board. The start and end positions for all elements are 

marked on the board, the board also fixes the timer in the centre. Participants are 

instructed to perform the tasks with the hand under test (the non-dominant or the 

prosthesis in these experiments). The subject presses the button on the timer, performs the 

test and then presses the button again to turn off the timer and complete the task, 

Figure Set_up. This time is entered in a database which calculates the overall score and the 

score for each grip form [22].  

 
Figure 1: Experimental set up: Shown is the IScan visor that holds the pupil and scene cameras. The 

pupil camera reads the position of the pupil via a mirror, this data is used to reconstruct the PoR in 

the scene recorded by the second camera. The SHAP task shown here is the pouring task with the 

form board and the timer in front of the subject. 
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For this application SHAP has the additional advantage of providing a framework that allows 

the computer system to make assumptions about the underlying structure of the tests: The 

form board holds the parts of the task in a fixed starting point. Each surface of the form 

board is a strong standardised colour (red for ADLs and blue for abstract objects). The 

timer button is in the centre and is blue surrounded by the grey of it's case. This makes the 

prediction of where points of interest lie in the first frame and their extraction from a noisy 

video field easier. Thus any computer based search can start with these features assumed 

e.g. colour, contrast and relative position in the visual field and search for known shapes and 

colours in the most likely place.  

 

2.2.1  Task 
For this paper, the SHAP task chosen for consideration is the Cutting task. The task is laid 

out with a cylinder of plasticine placed in the middle of the form board, beyond the timer. 

The knife is placed on the side of the hand under test. A test begins with the user starting 

the timer with the hand under test. The subject is allowed to pick it up with their 

contralateral hand and place it in the prosthesis (if they are prosthesis users). They then 

grasp the plasticine with their contralateral and cut the strip before replacing the knife 

beside the timer and turning the timer off with the test hand.  

 

The gaze information was analysed in relation to a series of areas of interest (AoIs). Every 

activity has different AoIs depending on the form of the ADL that is captured in the scene. 

For example; for the cutting task the Points of Regard (PoIs) are the knife, the plasticine, and 

the timer button. Investigation of the visual attention was then achieved by evaluating the 

amount of time the PoR was fixated on the specific AoIs throughout a given activity.  

 

3  Method 
Subjects were asked to perform simulated ADLs, using SHAP. During the tasks, the visual 

attention was recorded using an head mounted eye tracker, ISCAN, (ISCAN, Inc., 21 Cabot 

Road, Woburn, MA 01801, USA). The IScan system collects video data of the scene 

together with the coordinates of the pupil of one eye. The IScan identifies and suppresses 

saccades (quick movements of the eye to a new PoR) and maps the PoRs onto the video of 

the image field. This is stored in a standard video format. It is this data of the visual field and 

the point of regard that was used as the input to the analysis software described here.  

 
Figure 2: Schematic of the process. The IScan system uses two cameras to provide point of view 

data. This video is then analysed for information on the point of view, and areas of interest in each 

frame, having been trained on the areas of interest in the first frame the system steps through 

frame by frame. The data produced is then analysed for insight into gaze behaviour. 
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A schematic of the entire system is Figure 2. The guiding principle of the software design 

was that it should be simple to use and not need extensive development of specialist 

machine learning software. The initial identification of different areas would be made by the 

operator on the first image of the sequence and the computer would be able to extract 

sufficient information about the image to track through the rest of the video. Should the 

computer lose track of an area of interest, the operator could help the program re-acquire 

the area, through simple interactions with the computer.  

 

The custom software presented the first frame to the operator, who used a mouse to 

identify the key areas of interest in the particular task. The software then identified the 

colour and shape of the object and subsequently stepped through the video frame by frame 

using this data on the colour and shape to identify the AoIs in each new frame. As the AoIs 

cannot move very far between successive frames the computer need only search in small 

area close to the position the object in the succeeding frame. This reduces both the search 
time and the chances of another item being misinterpreted as one of the PoIs. If the 

computer had not found the object within the search area it then requested the operator to 

point to its location. Once the AoI was found then its Centre of Mass (CoM), was recorded 

and the computer went on identifying all other AoIs in this frame. Once complete the 

computer moved on to the next frame, and continued frame by frame until the end of the 

video was reached.  

 

The IScan was worn on the head and cables run to a computer. The video stream 

information was captured at a frame rate of 29.97 frames per second. The area surrounding 

the table was curtained off to remove unwanted additional images in the peripheral vision. 

The view generated by the system is shown in Figure 3. This image is of the form board and 

the timer. The cross-hairs for the point of regard are visible. This will be referred to as the 

`primary image' from which the analysis software bases its initial decisions and the results 

will be shown throughout the rest of the paper.  

 
Figure 3: An example of the image created by the IScan system. The form board, subject's hands, 

and the cross shows, where the subjects gaze is focused. The form board is set up for the cutting 
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task, the object to be cut is in the top centre, the knife is to the right and centre bottom is the timer 

with the on/off switch in blue. 

 

3.1  Image Processing 
The video is a sequence of images or frames, the analysis was made frame by frame starting 

with the first image. The system identified and tracked the desired objects within each 

image. The code was not constructed to work without some human intervention. The 

software coordinated the identification of the key points of interest in the first frame by the 

operator and the computer tracked the movement through the visual field in subsequent 

frames using distinctive visual features. The software extracted the boundaries and 

coordinates of the AoIs from the videos captured. It used established image processing 

techniques [29].  

 

The task was divided into three parts:  

1. Train the system on the first frame  

2. Iterate through subsequent frames using the information to locate the PoIs and 

record their coordinates  

3. Calculate the relative position of the gaze from the PoIs and determine a glance or 

fixation and display the information graphically  

Details of the first two stages are reported here and some initial results from the analysis 

shown.  

 

Training on first frame 
The system presents the first frame and prompts the operator to identify all the AoIs for 

the particular task and the system then extracts the features: Colour, shape and Centre of 

Mass and stores them, Figure 4 a).  

 
Figure 4: Extraction of AoIs and PoRs. a) Training the system on the first frame for the features; 

colour, shape and movement. b) Extraction of AoIs in subsequent frames. 
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Identification on subsequent frames 
For all frames in the video the basic sequence remains similar, until the end of the video: 

Extract cross hair position, using the feature information and search windows to detect all 

AoIs. If one cannot be found prompt the user for input, otherwise update the features and 

create a new search window, Figure 4 b).  

 

3.1.1  Object acquisition 
The first step to acquire the data is to locate the objects in the scene. This is done by 

identifying their boundaries and hence recognizing the items as separate entities. For this 

two spatio-temporal methods were employed [30], one based on colour and the other on 

edge segmentation.  

 

Colour based segmentation This creates segments on the basis of similarities in colour 

intensity. The intensity is extracted from maps of the fundamental colours (red, green and 
blue) [31]. The precise value of the intensity depends on the particular illumination level and 

a single object can possess different colour attributes at different times. To circumvent this, 

a measure of `nuance' was implemented. The colour descriptors were derived from the 

normalized RGB channels, and were referred to as `redness', `blueness' and `greenness'. 

The code accepts a range of colour values around the core values of red, green and blue. 

For an 8 bit map the Red colour is 255 and the other two colours are zero. However, to 

have `redness', the red colour need only 70% of the maximum value and maximum of 20%  

of either or both of Blue and Green. To ensure there was a full range of colours to analyse 

the ranges were normalised first. The the mean intensity and standard deviations for the 

RGB were calculated and the nuanced images produced. Two nuanced colour maps are seen 

in of Figure 5, together with the original image.  

 

 
Figure 5: Red and Blue `nuance' colour images, compared with the primary image. Colour of 

interest is shown as white in the nuance colour images. 
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Edge detection As colour segmentation cannot discriminate between similarly coloured 

objects the next stage was to use edge detection techniques. Edge detection is based on 

detecting sudden changes in intensity [29]. Thus derivative of the intensity in the image 

locates the majority of edges. The interface applied Canny edge detection methods from the 

Matlab signal processing toolbox, This applies a Gaussian filter on the data and then 

calculates the derivative of the image [32]. Figure 5 shows the edges on the primary image.  

 

An example of the shape extraction for the button is indicated in Figure 6. The user inputs a 

selection of the button by pointing the mouse at any part of the button. The computer 

constructs a bounding box around the area that is roughly the same colour. At the same 

time the convex shape based on the edge detection algorithm determines the size of the 

bounding box. The colour mask then is applied to the shape. The top of the button has a 

flare from the lights of the room so that to the camera it is not all the same colour, but by 

combining the colour characteristics and the the edge detection results the final shape 

approximation is created. In subsequent frames the bounding box can be applied and the 
button reacquired.  

 
Figure 6: Result of applying edge detection on the primary image. 

 

Point of Regard tracking  Once the bounding box is defined around the object it is 

possible to define when the subject is looking at that particular area of interest. This occurs 

when the cross-hairs are inside or close to the bounding box. From this the gaze behaviour 

can be built up from the analysis of the individual frames. `Close' to the bounding box is 

defined as if the co-ordinates of the PoR to be within 10% of the size of the object, in this 

way the size of the target object is taken into account.  

 

3.1.2  Search window 
An object is tracked by being identified in every new frame. This search time to identify an 

object can be reduced by restricting the search area to that which an object can be 

reasonably be expected to move in the time between two consecutive frames. For each new 
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frame, the classifier aimed to identify the objects based on a maximum reasonable distance 

between the observed feature vectors.  

 

 
Figure 7: The process of assisted segmentation. The user indicates an item of interest (the time 

button) and based on the edge detection and colour matching results the computer can track the 

position of the button in the frame. 

 
The sequential frames are 33ms apart. An object in front of the subject, between them and 

the form board is up to 300mm from the camera. The form board is 430mm by 310mm. A 

maximum velocity was set to be 0.2 ms-1 (four times the peak reaching speed recorded by 

Bouwsema [33]). If it is moving perpendicular to the visual field this corresponds to 33mm 

between frames. The furthest edge of the form board occupies half of the frame and for the 

output of the IScan this corresponds to 720 by 540 pixels (see Figure 3). Thus the range 

limit is one tenth of the width of the visual field (72 pixels). The search window for 

subsequent frames is set to be larger by 72 pixels all round. If the object is not found within 

this window the interface referred back to the operator for a new entry.  

 

3.1.3  Data extracted 
For analysis of the action the characteristics that were then extracted from the video data 

were the Euclidean distances between the PoR, and the CoM and bounding boxes of the 

AoIs. The duration of individual fixations were measured, by counting the number of frames 

the PoR is within an AoI. These data are sufficient for concluding whether a subject is 

fixating an object or is glancing at it. Based on previous work [34,35] a fixation was defined 

as a time on the target greater than 200ms (seven frames). Once the data is obtained it is 

possible to gain insights in behaviour.  
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3.1.4  Subjects 
Fourteen subjects without limb differences were recruited from the staff and students of the 

University of New Brunswick (UNB), nine males and five females, nine were right handed 

(mean age 29, range 18 to 48) and four users of prosthetic limbs volunteered through the 

limb clinic at UNB (ages not available). Research ethics for the experiment number, was 

obtained from UNBs Research Ethics Board (REB2010-099). All users had absences below 

the elbow and used standard single axis myoelectric limbs with friction wrists and were 

allowed to adjust the orientation of their prosthesis before each activity. A single prosthesis 

user performed the test twice, first with their prosthesis and second time with their 

contralateral hand, allowing additional comparisons.  

 

After the ethics processes were completed, each subject donned the IScan headset and 

prior to the tests the system was calibrated. Subjects were then asked to perform the six 

SHAP tasks (Pouring water, Coins, Cutting, Abstract Lateral, Page turning, operating a Zip), 

for details [22,23]. Subjects then removed the eye tracker headset and performed a SHAP 

test according to the standard protocol.  

 

4  Results 
For this paper the emphasis is on the Cutting task. Results of the overall SHAP tasks and 

other details are included in a separate publication [36]. Due to limitations in the system, 

gaze data was not available for some instances (see 5). In a test of 100 gaze video sequences 

the semi-automated tracker only lost the various targets when the IScan device lost track of 

the gaze. There were 18 users with 6 tasks and 8 sequences where the fixation data was 

missing.  
 

4.0.5  General observations of the task 
Non-impaired subject tends to look at the button as they are reaching for it, but quickly 

changed their focus on to the knife before their hand had gotten to the button. Similarly, 

their gaze moved ahead to the plasticine while picking up the knife. Subjects may have 

looked briefly at the blade to ensure it is in the right position, especially if they have not 

handled the knife before. In contrast the impression from observing the video suggests that 

prosthesis users looked at the button until it was pressed and attended to the knife until 

they have it firmly in their grasp. They then fixated on the plasticine until they have finished 

cutting it and so on.  
 

4.0.6  Video information 
To assist in the understanding of the usual behaviour afforded by this tool, data for a single 

unimpaired subject is studied. The processed data is represented in the 2D plane of the 

image, this allows different ways to represent the data, examples are given here. Instead of 

showing the data relative to the static field of the observer, once acquired, it is possible to 

transform that data relative to different points of regard. The software can assess the 

relative position of the Point of Regard (PoR) with respect to the Centre of Mass (CoM) of 

each Object of Interest (OI) in the scene. Figure 7 shows an example of the position of a 

single OI, (the blue timer button, positioned here top left). For each frame, the COM is 
plotted at the origin (`stabilized' CoM). The PoRs are show as adjusted relative to the 

button. Their offset to the origin, (relative to the CoM), is plotted on the vertical and 

horizontal axes. Each cross represents the PoR in a specific frame in the video. The blue 

rectangles surrounding the origin represent the bounding boxes of the button, (i.e. the 

minimal area rectangles that completely confine the OI). There are multiple bounding boxes 
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for each frame, hence a heavy blue line. The crosses are the PoR and they are shown in blue 

outside the bounding box and red inside, suggesting that for those frames, the subject was 

fixating on that OI. Using this technique one can observe that the subject does not attend to 

the button except when they are reaching for it.  

 

Figure 8 shows the time series of the same sequence. The horizontal axis is the frame 

number, hence the time. The vertical axis is the distance from the blue button CoMs. Red 

circles mark the frames when the PoR was inside the bounding box of the reference object 

(fixating on the button). This is the analysis of 150 frames or approximately five seconds of 

recorded video. The subject looks at the button only once. However, in Figure 9 which 

shows the Euclidean distances between the PoR and the CoM of another tracked object 

within the scene (the knife). It can be seen that the PoR is never within the bounding box of 

the OI, so the subject never looks directly at the knife, but see it in their peripheral vision 

only.  

 
Figure 8: Relative PoRs to CoM coordinates for the cutting task for an unimpaired subject. The timer 

button is the stabilised as the centre of mass and is at the origin. Note: Upper left. The multiple 

PoRs are then show relative to it. The red crosses are when the attention is on the button. 

 
Figure 9 The motion of the point of regard (PoR) relative to the blue button (CoM) for an 

unimpaired subject. The Euclidean distance is on the Y-axis and the frame number (hence time) is 

on the X-axis. This unimpaired subject looks at the target before they reach towards it. 
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Figure 10 The motion of the point of regard (PoR) relative to the knife (CoM) for an unimpaired 

subject. The Euclidean distance is on the Y-axis and the frame number (hence time) is on the X-

axis. The unimpaired subject looks never needs to look directly at the target. Merely keeping it in 

their peripheral vision. 

 

4.0.7  Analysis of the statistical data 
To demonstrate the other results that can be obtained from this analysis an aggregation of 

the data for cutting task is shown Figure 10. It depicts the proportions of the average 

number of gazes for both groups. The data is divided up into the reaching and manipulation 

phases. The data is further divided up into three temporal phases; below a quarter of a 

second, from that to one second and gazes longer than a second (`glances', `looks' and 

`stares'). 

 

The results show that when they employed their prosthesis the users showed a greater 

range of glances across the visual field. The proportion of the number of `glances' were 

similar in both groups, but the users fixated on the target for longer. Note, the users take 

longer overall to perform the tasks. Unimpaired average trial duration is 4.8 ±1.5s, with 6 ± 

3 fixations, while the prosthesis users are 20 ± 12s with 14 ± 10 fixations. During the 

manipulation phase the number of glances was far higher in the prosthesis population while 

the unimpaired subjects stared directly at the plasticine.   

 

5  Discussion 
The system proved to be reliable enough to automate much of the process. There was a 
greater number of times the IScan system was unable to track the gaze of the subjects, than 

the custom software could track the OIs. This limitation can be reduced by ensuring the 

IScan system is set up correctly at the beginning. There are numerous factors that dictate 

the success of the system; position of the tracker on the head of the subject, level of 

illumination, the shape of the subjects orbits and if the visor carrying the scanner has been 

inadvertently moved by the subject. The experimenter needs to be vigilant in detecting and 

reducing these problems.  
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Figure 11: Number of fixations for the cutting task divided into three phases: Below 0.25s, between 

0.25 and 1s and greater than one second. (a) Data for reaching phase, and (b) the manipulation 

phase. Error bars are standard deviation across subjects. 

 

5.1  Gaze tracking 
This simplified approach to the automation of the analysis of the visual field is novel in this 

application to prosthetics gaze tracking. The time to undertake the work of basic analysis 

was much reduced and the data produced was available for many different forms of 

subsequent analysis. It has been shown that is possible to evaluate the gaze behaviour by 

identifying the frames at which the PoR is fixated at specific OIs or AoIs with less user input 
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and thus needing reduced reliability on the skills of the operator compared with a standard 

process in [17].  

 

Different insights can be gained from the different ways of creating and displaying the data. 

Time series data can allow reading of the single activity, collected numerical data allows 

aggregation. By counting the number of consecutive frames, the duration of each fixation 

can be extracted, and a measure of the amount of attention paid to any particular point of 

regard derived. An example is shown in Figure 9. The PoR was fixated at the timer button 

for ten consecutive frames. This amounts to 0.66% of the total time analysed (150 frames or 

roughly 5 seconds). Whereas in Figure 10, local minima (seen in frames 50 to 60, 115 to 120 

and around frame 150, for the knife), shows that the PoR quickly approaches the CoM of 

that object of interest. This suggests either a glance towards the OI or a focus towards 

another OI that is in the vicinity. Study of the video frames shows there is nothing of 

interest at these points, thus the subject is simply glancing towards the target.  

 
Data aggregation allows a nuanced analysis of the population data. One example from this 

task is the amount of time the operator looks at the button compared with the time 

regarding the knife. Comparing Figures 9 and 10 with the number and length of different 

fixations (Figure 11), shows how much attention the subjects need to attend to the sub 

tasks.  

 

The key interest for this investigation is the comparison of the actions of the prosthesis 

users compared with the majority of the population. In both groups, reaching has a similar 

percentage of glances at objects (times less than 0.25s). The prosthesis users then `stare' at 

the objects (such as the button) for far longer than the unimpaired (percentage of fixations 

greater than 1s, compared with mid length `looks' between 0.25s and 1s). During the 

manipulation phase this is very different with the users spending more than 60% of the time 

glancing between the prosthesis and the task itself, while once again the unimpaired subjects 

spent the majority of the time looking at the plasticine. The inference from this it that the 

user of a prosthesis needs to monitor the prosthesis and the objects equally, moving their 

eyes away from the task to the hand and back, checking that the prosthesis is still retaining 

the object. This results in many more short fixations relative to the unimpaired subjects, 

who can rely on touch feedback to tell them if the object is slipping from the grasp.  

 

5.2  Head orientation 
Humans can acquire visual information using different behaviours. They can look directly at 

an object (foveate), glance at it or to use the peripheral vision to check on the location of 

important, but secondary details [5]. Additionally, the individual can divert their gaze 

towards the object, but for more concerted focus they can rotate their head towards the 

object and fix it it in the centre of their visual field. This is likely to be associated with longer 

fixation times or when the priority given to the task. To extract this information from eye 

tracker data, one solution would be to require the computer to numerically transform the 

entire visual field and obtain the details of the rotations of what is seen [37,38]. Using the 

objects within SHAP makes the analysis far simpler: If the timer's bounding box remains in 

the lower centre of the frame then the subject is pointing ahead. Only if the button moves 

away from centre of the frame and the PoR moves towards the centre, is the subject is 

concentrating on the activity.  
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This difference can be observed by plotting all the PoRs on a single two dimensional field. If 

the subject turns their head towards a target the PoRs will be closer to the centre of the 

image, Figure 12. An illustrative comparison can be made between the behaviours of the 

single subject that performed the test with their prosthesis and their unimpaired hand. With 

their contralateral side the subject kept their head pointing forwards and used peripheral 

vision to track the activity (green crosses). With their prosthesis, the operator turned their 

head towards the knife on the left side of the form board, putting it closer to the centre of 

the visual field (red crosses towards the right side). The gaze can be seen to cover more of 

the visual field as they look about more from the greater spread of red crosses. This, 

coupled with the difference in fixation durations, paints a picture of someone with a far 

greater focus on the task.  

 
Figure 12: The range of regard across the visual field for the unimpaired arm and the prosthesis. 

Values are dimensionless numbers from the digitisation of the visual image. Green crosses are for an 

unimpaired hand, red are for a prosthesis. 

 

Finally, the point of view of the subject provides clues as to how they compensate for the 

lack of flexibility in some of the joints in their prosthesis. Users of prosthetic limbs tend to 

compensate for the lack of flexibility in the wrist and forearm by using a combination of 

humeral abduction and trunk sway instead of flexion/extension and pro-supination [39]. This 

motion tends to cause the visual field to rotate, and this is clear in a comparison of frames 

during the pouring task; Figure 13. The first example is an early frame and the second is 

taken during the pour, showing considerable rotation of the body to the right in 

compensation.  

 

The choice of task has a strong influence on the applicability of the assessment. As has been 

indicated, the greater the abstraction of the task the more general the conclusions, but 

these are more removed from real activities in the field [20]. SHAP was designed to create a 

balance between the contrasting pressures, clinically valid tasks that are sufficiently well 

controlled to allow broader conclusions about manipulation [22]. Other assessment tools 

have been developed that could also employ similar techniques to automate the process of 
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analysis [40,41,42]. Using SHAP tasks restricts the activity to small scale indoor 

manipulations, but as the hand is generally used in this circumstance this is not too great a 

restriction.  

 

 
Figure 13: Example of the rotation of the visual perspective as a prosthetic user employs a 

combination of trunk sway and humeral abduction to compensate for a lack of pro-supination in 

their prosthesis. The subject has lent to the right as they pour the carton. The image rotates to the 
left. First image is the initial set up and the second during the pour. 

 

 

 



A Tool to Assist in the Analysis of Gaze Patterns in Upper Limb Prosthetic Use Kyberd23c 

Page 18 

 

An additional advantage of this method is it allows a measure of the closeness of the gaze to  

an object to be quantified. With conventional video analysis, the points of interest are 

marked by hand. If the size of an object of interest is considered it has to be arbitrarily 

assigned by the operator too. This software derives a size from the visible outline of the 

object and a centre of mass is based on the image itself. Any a fixation or a glance in the 

peripheral vision can be measured and recorded repeatedly and objectively.  

 

5.3  Refinements 
While the system proved satisfactory there are a number of possible refinements to 

automate the system further:  

 

It is possible to detect trunk sway and measure its timing or extent from the data. Again the 

choice of a SHAP task makes it far simpler as the displacement of the button from the lower 

centre of the visual field combined with the angle of the form board, is sufficient to detect 

the motion without needing to derive the precise angle of flexion.  

 

The system does not rely on any particular form of visual information, such as how the PoR 

is defined or shown on the images which is a particular characteristic of each gaze tracking 

system., This tool has been shown to work with other gaze tracking hardware (Dikablis 

Professional Wireless Eye Tracker, (https://ergoneers.com/en/eye-tracker/dikablis-hdk-eye-

tracker/) [43]).  

 

A refinement to the code would be to use the context of the known activity (such as 

cutting) to automatically search for the knife, button and plasticine in the early image based 

on their known colour where they should be in any SHAP sequence, although this level of 

automation will make the tool less general for use with other tasks. Additionally, it is 

possible to use the motion data of prior frames to restrict the search box further, 

predicting position based on the preceding motion of the last few frames, rather than an 

arbitrary constant maximum speed. Again this level of sophistication was not found to be 

needed in this application.  

 

This interface has been used to automate the process of studying gaze during the learning 

process. When performing an unfamiliar task subjects tend to fixate for shorter periods of 

time compared with routine operations, thus it is more important to have objective 
measures of gaze as provided by this program.  

 

6  Conclusion 
Using a standardised format for a task, it is possible to create a simple interface that tracks 

the points of interest in a video sequence that records the motions and the point of regard 

within the visual field. Once the system has been given some points of interest in the first 

frame of the video sequence by the operator the system can track their motion through the 

activity of interest, determining how the subject looks at the key points on a visual field 

during the activity and suggests prosthesis users devote more focus and attention to a task. 

This system has been used to analyse the data from the tasks and investigate the behaviours 

when a task is new to the operators.  

 

 

 



A Tool to Assist in the Analysis of Gaze Patterns in Upper Limb Prosthetic Use Kyberd23c 

Page 19 

 

References 
[1] P. Kyberd. Making Hands: A History of Prosthetic Arms. Academic Press, The Boulevard, 

Langford Lane, Kidlington, Oxford OX5 1GB, UK, 2021.  

[2] G. Westling and R.S. Johansson. Factors influencing the force control during 

precision grip. Experimental brain research, 53:277-284, 1984.  

[3] M. Land, N. Mennie, and J. Rusted. The roles of vision and eye movements in the 

control of activities of daily living. Perception, 28(11):1311-1328, 1999.  

[4] B. Law, M S. Atkins, Arthur E Kirkpatrick, and Alan J Lomax. Eye gaze patterns 

differentiate novice and experts in a virtual laparoscopic surgery training environment. In 

Proceedings of the 2004 symposium on eye tracking research & applications, pages 41-48, 2004.  

[5] C. Vater, A. M. Williams, and E-J. Hossner. What do we see out of the corner of our 

eye? the role of visual pivots and gaze anchors in sport. International Review of Sport and 

Exercise Psychology, 13(1):81-103, 2020.  

[6] K. Y Cheng, M. Rehani, and J. S Hebert. A scoping review of eye tracking metrics 
used to assess visuomotor behaviours of upper limb prosthesis users. Journal of 

NeuroEngineering and Rehabilitation, 20(1):1-22, 2023.  

[7] H. Bouwsema, P.J. Kyberd, W. Hill, C.K. van der Sluis, and R.M. Bongers. 

Determining skill level in myoelectric prosthesis use with multiple outcome measures. 

Journal of Rehabilitation Research and Developement, 49(9):1331-1348, 2012.  

[8] M. Sobuh, L.P.J. Kenney, A. Galpin, S. Thies, J. McLaughlin, J. Kulkarni, and P. Kyberd. 

Visuomotor behaviours when using a myoelectric prosthesis. Journal of Neuro Engineering and 

Rehabilitation, 11(17):72-83, 2014.  

[9] K. L Jackson, Z. Duric, S. M Engdahl, A. C Santago II, Siddhartha Sikdar, and Lynn H 

Gerber. Approaches for segmenting the reaching and targeting motion primitives in 

functional upper extremity reaching tasks. IEEE Journal of Translational Engineering in Health 

and Medicine, 2023.  

[10] J. Han, Ling Shao, D. Xu, and J. Shotton. Enhanced computer vision with Microsoft 

Kinect sensor: A review. IEEE transactions on cybernetics, 43(5):1318-1334, 2013.  

[11] J. Smisek, M. Jancosek, and T. Pajdla. 3D with Kinect. Consumer depth cameras for 

computer vision: Research topics and applications, pages 3-25, 2013.  

[12] M. F Land and M. Hayhoe. In what ways do eye movements contribute to everyday 

activities? Vision research, 41(25-26):3559-3565, 2001.  

[13] F.A. Popa and P.J. Kyberd. Identification of patterns in upper limb prosthetic usage by 

analysis of visual attention to areas of interest. In "MEC'11 Symposium - Raising the Standard", 

Proceedings of the 2011 MyoElectric Controls/Powered Prosthetics Symposium, pages 226-229, 

Fredericton, New Brunswick, Canada, August 14-19 2011. Institute of Biomedical 

Engineering.  

[14] JVV Parr, S, J Vine, NR Harrison, and G. Wood. Examining the spatiotemporal 

disruption to gaze when using a myoelectric prosthetic hand. Journal of motor behavior, 

50(4):416-425, 2018.  

[15] V. Gregori, M. Cognolato, G. Saetta, M. Atzori, Megane Pro Consortium, and Arjan 

Gijsberts. On the visuomotor behavior of amputees and able-bodied people during grasping. 

Frontiers in bioengineering and biotechnology, 7:316, 2019.  

[16] K. Y Cheng, C. S Chapman, and J. S Hebert. Spatiotemporal coupling of hand and eye 
movements when using a myoelectric prosthetic hand. In 2022 International Conference on 

Rehabilitation Robotics (ICORR), pages 1-6. IEEE, 2022.  



A Tool to Assist in the Analysis of Gaze Patterns in Upper Limb Prosthetic Use Kyberd23c 

Page 20 

 

[17] M Sobuh, L Kenney, A Galpin, S Thies, P Kyberd, and R Raffi. Coding scheme for 

characterising gaze behaviour of prosthetic use. In Myoelectric Controls Symposium - Raising the 

Standard, pages 106-109, 2011.  

[18] N. Pokhrel, S. Snäll, O. I Heimo, U. Sarwar, A. Airola, and T. Säntti. Accelerating 

image processing using reduced precision calculation convolution engines. Journal of Signal 

Processing Systems, pages 1-12, 2023.  

[19] S Gnanapriya and K Rahimunnisa. Helping hand: A GMM-based real-time assistive 

device for disabled using hand gestures. In Machine Learning Techniques for Smart City 

Applications: Trends and Solutions, pages 23-33. Springer, 2022.  

[20] P.J Kyberd. Outcome measures. In O.C Aszmann and D. Farina, editors, Bionic Limb 

Reconstruction. Springer Nature, Gewerbestrasse 11, 6330 Cham, Switzerld, 2021.  

[21] S.B.A Thies, LPJ Kenney, M Sobuh, AJ Galpin, P Kyberd, R Stine, and MJ Major. Skill 

assessment in upper limb myoelectric prosthesis users: Validation of a clinically feasible 

method for characterising upper limb temporal and amplitude variability during the 

performance of functional tasks. Medical Engineering and Physics, 47:37-143.  

[22] C.M. Light, P.H. Chappell, and P.J. Kyberd. Establishing a standardized clinical 

assessment tool of pathologic and prosthetic hand function. Archive of Physical Medicine and 

Rehabilitation, 83(6):776-783, 2002.  

[23] P. J. Kyberd, A. Murgia, M. Gasson, T. Tjerks, C. Metcalf, P. H. Chappell, K. Warwick, 

S. E. M. Lawson, and T. Barnhill. Case studies to demonstrate the range of application of the 

Southampton Hand Assessment Procedure. British journal of Occupational Therapy, 72(5):212-

218, May 2009.  

[24] C.M. Light. An Intelligent Hand Prosthesis and Evaluation of Pathological and Prosthetic 

Hand Function. PhD thesis, Electrical Engineering Department, University of Southampton, 

2000.  

[25] L. Resnik, M. Borgia, J. M Cancio, J. Delikat, and P. Ni. Psychometric evaluation of the 

Southampton Hand Assessment Procedure (SHAP) in a sample of upper limb prosthesis 

users. Journal of Hand Therapy, 2021.  

[26] T. Tanaka, K. Taguchi, J. Shikano, I. Motomatsu, N. Ootaki, M. Nakagawa, T. 

Hamagushi, and M. Abo. Validity of the Japanese version of the Southampton Hand 

Assessment Procedure in stroke patients. The Japanese Journal of Rehabilitation Medicine, 

pages 18009-18009, 2019.  

[27] A. Murgia, P.J. Kyberd, P. Chappell, and C.M. Light. The use of gait analysis 

techniques in the measure of hand function. Journal of Hand Surgery, 30B(Supplement 1):83-

84, June 2005.  

[28] M. Sobuh. Visuomotor Behaviours During Functional Task Performance with a Myoelectric 

Prosthesis. University of Salford (United Kingdom), 2012.  

[29] M. Nixon and A. Aguado. Feature extraction and image processing for computer vision. 

Academic press, 4th edition, 2019.  

[30] D. Zhang and G. Lu. Segmentation of moving objects in image sequence: A review. 

Circuits, Systems and Signal Processing, 20:143-183, 2001.  

[31] Q. Zaidi and M. Bostic. Colour strategies for object identification. Vision research, 

48(26):2673-2681, 2008.  

[32] MATLAB. version 9.13.0 (R2022b). The MathWorks Incorporated, Natick, 

Massachusetts, USA, 2022.  



A Tool to Assist in the Analysis of Gaze Patterns in Upper Limb Prosthetic Use Kyberd23c 

Page 21 

 

[33] H. Bouwsema, C.K. van der Sluis, and R.M. Bongers. Movement characteristics of 

upper extremity prostheses during basic goal-directed tasks. Clinical Biomechanics, 25(6):523-

529, 2010.  

[34] T. A Salthouse and C. L Ellis. Determinants of eye-fixation duration. The American 

journal of psychology, pages 207-234, 1980.  

[35] B. R Manor and E. Gordon. Defining the temporal threshold for ocular fixation in 

free-viewing visuocognitive tasks. Journal of neuroscience methods, 128(1-2):85-93, 2003.  

[36] P. Kyberd, A. Popa, and T. Cojean. The role of visual attention in controlling a 

prosthesis in a novel task. In Preparation.  

[37] L. Ritchie and B.T. Sharpe. Gaze behaviour of a cellist: A case study. In International 

Symposium on Performance Science, 2023.  

[38] L. Ritchie and B.T. Sharpe. Gaze behaviour of a cellist: From sight-reading to 

performance. PsyArXiv, 2023.  

[39] A. Zinck. The investigation of compensatory movements in prosthesis users and the 

design of a novel wrist. University of New Brusnwick, Masters, Department of Mechanical 

Engineering, University of New Brunswick, 2008.  

[40] A. Chadwell, L. Kenney, S. Thies, A. Galpin, and J. Head. The reality of myoelectric 

prostheses: Understanding what makes these devices difficult for some users to control. 

Frontiers of Neurorobotics, 10(7), 2016.  

[41] J. S Hebert, Q. A Boser, A. M Valevicius, H. Tanikawa, E. B Lavoie, A. H Vette, 

Patrick M Pilarski, and Craig S Chapman. Quantitative eye gaze and movement differences in 

visuomotor adaptations to varying task demands among upper-extremity prosthesis users. 

JAMA network open, 2(9), 2019.  

[42] M. M. White, W. Zhang, A. T Winslow, M. Zahabi, F. Zhang, H. Huang, and D. B 

Kaber. Usability comparison of conventional direct control versus pattern recognition 

control of transradial prostheses. IEEE Transactions on Human-Machine Systems, 47(6):1146-

1157, 2017.  

[43] A. Chadwell. The Reality of Myoelectric Prostheses: How do EMG skill, unpredictability of 

prosthesis response, and delays impact on user functionality and everyday prosthesis use? PhD 

thesis, school of Health Sciences, University of Salford, 2018. 


