437 research outputs found

    Measurement of Residual Stresses Around a Circular Patch Weld Using Barkhausen Noise

    Get PDF
    Welding is a common means of joining and repairing steel structures. In the case of steel tanks, circular patch welds are often used for repairing the structure after removal of a defective area. Unfortunately, the welding process also produces residual stresses which, if not relieved, can impair the integrity of the structure. Measurement of residual stresses produced by welding is needed, for example, to verify the effectiveness of a stress relief heat treatment which is typically used to remove weld-induced stresses

    Survival and Synapse Formation of Transplanted Rat Rods

    Get PDF
    Isolated rods enzymatically removed from normal adult rat retina have been transplanted to the subretinal space of adult rats with a retinal dystrophy winich has destroyed almost all the photoreceptors. These transplanted rods survive for months after transplantation during which time they form synapses with other retinal cells. Rod spherules with large amounts of synaptic vesicles and synaptic ribbons are found forming discreet contacts with pre- and postsynaptic densities in arrangements closely resembling those seen in the normal retina

    Preliminary Studies of Magnetic NDE Techniques for Identifying Neutron Embrittlement of Pressure Vessel Steel

    Get PDF
    In operating nuclear reactors, the steel pressure vessel is exposed to neutron irradiation. The high energy part (\u3e1 MeV) of this irradiation, over a long period, makes the steel brittle and susceptible to rupture

    Modeling the interrelating effects of plastic deformation and stress on magnetic properties of materials

    Get PDF
    A model has been developed that describes the interrelating effects of plastic deformation and applied stress on hysteresis loops based on the theory of ferromagnetichysteresis. In the current model the strength of pinning sites for domain walls is characterized by the pinning coefficient keff given by keff=k0+k′σ. The term k0 depicts pinning of domain walls by dislocations and is proportional to ρn, where ρ is the number density of dislocation which is related to the amount of plastic strain, and the exponent n depends on the strength of pinning sites. The second term k′σ∝−3/2λs/2mσ, where m is magnetization and λs is magnetostriction constant, describes the changes in pinning strength on a domain wall induced by an applied stress σ. The model was capable of reproducing the stress dependence of hysteresis loop properties such as coercivity and remanence of a series of nickel samples which were pre-strained to various plastic strain levels. An empirical relation was found between the parameter k0 and the plastic strain, which can be interpreted in terms of the effects on the strength of domain wall pinning of changes in dislocation density and substructure under plastic deformation

    Contingent negative variation and its relation to time estimation: a theoretical evaluation

    Get PDF
    The relation between the contingent negative variation (CNV) and time estimation is evaluated in terms of temporal accumulation and preparation processes. The conclusion is that the CNV as measured from the electroencephalogram (EEG) recorded at fronto-central and parietal-central areas is not a direct reflection of the underlying interval timing mechanism(s), but more likely represents a time-based response preparation/decision-making process

    Post-vaccine epidemiology of serotype 3 pneumococci identifies transformation inhibition through prophage-driven alteration of a non-coding RNA

    Get PDF
    Background: The respiratory pathogen Streptococcus pneumoniae (the pneumococcus) is a genetically diverse bacterium associated with over 101 immunologically distinct polysaccharide capsules (serotypes). Polysaccharide conjugate vaccines (PCVs) have successfully eliminated multiple targeted serotypes, yet the mucoid serotype 3 has persisted despite its inclusion in PCV13. This capsule type is predominantly associated with a single globally disseminated strain, GPSC12 (clonal complex 180).Methods: A genomic epidemiology study combined previous surveillance datasets of serotype 3 pneumococci to analyse the population structure, dynamics, and differences in rates of diversification within GPSC12 during the period of PCV introductions. Transcriptomic analyses, whole genome sequencing, mutagenesis, and electron microscopy were used to characterise the phenotypic impact of loci hypothesised to affect this strain's evolution.Results: GPSC12 was split into clades by a genomic analysis. Clade I, the most common, rarely underwent transformation, but was typically infected with the prophage phi OXC141. Prior to the introduction of PCV13, this Glade's composition shifted towards a phi OXC141-negative subpopulation in a systematically sampled UK collection. In the post-PCV13 era, more rapidly recombining non-Clade I isolates, also phi OXC141-negative, have risen in prevalence. The low in vitro transformation efficiency of a Clade I isolate could not be fully explained by the similar to 100-fold reduction attributable to the serotype 3 capsule. Accordingly, prophage phi OXC141 was found to modify csRNA3, a non-coding RNA that inhibits the induction of transformation. This alteration was identified in -30% of all pneumococci and was particularly common in the unusually clonal serotype 1 GPSC2 strain. RNA-seq and quantitative reverse transcriptase PCR experiments using a genetically tractable pneumococcus demonstrated the altered csRNA3 was more effective at inhibiting production of the competence-stimulating peptide pheromone. This resulted in a reduction in the induction of competence for transformation.Conclusion: This interference with the quorum sensing needed to induce competence reduces the risk of the prophage being deleted by homologous recombination. Hence the selfish prophage-driven alteration of a regulatory RNA limits cell-cell communication and horizontal gene transfer, complicating the interpretation of post-vaccine population dynamics

    Zinc deficiency negatively affects alkaline phosphatase and the concentration of Ca, Mg and P in rats

    Get PDF
    Zn is an essential nutrient that is required in humans and animals for many physiological functions, including immune and antioxidant function, growth, and reproduction. The present study evaluated whether Zn deficiency would negatively affect bone-related enzyme, ALP, and other bone-related minerals (Ca, P and Mg) in rats. Thirty Sprague Dawley rats were assigned to one of the three different Zn dietary groups, such as Zn adequate (ZA, 35 mg/kg), pair fed (PF, 35 mg/kg), Zn deficient (ZD, 1 mg/kg) diet, and fed for 10 weeks. Food intake and body weight were measured daily and weekly, respectively. ALP was measured by spectrophotometry and mineral contents were measured by inductively coupled plasma-mass spectrophotometer (ICP-MS). Zn deficient rats showed decreased food intake and body weight compared with Zn adequate rats (p<0.05). Zn deficiency reduced ALP activity in blood (RBC, plasma) and the tissues (liver, kidney and small intestine) (p<0.05). Also, Zn deficiency reduced mineral concentrations in rat tissues (Ca for muscle and liver, and Mg for muscle and liver) (p<0.05). The study results imply the requirement of proper Zn nurture for maintaining bone growth and formation
    corecore