957 research outputs found
The origin of the phase separation in partially deuterated -(ET)Cu[N(CN)]Br studied by infrared magneto-optical imaging spectroscopy
The direct observation of the phase separation between the metallic and
insulating states of 75 %-deuterated -(ET)Cu[N(CN)]Br ()
using infrared magneto-optical imaging spectroscopy is reported, as well as the
associated temperature, cooling rate, and magnetic field dependencies of the
separation. The distribution of the center of spectral weight () of
did not change under any of the conditions in which data were taken and
was wider than that of the non-deuterated material. This result indicates that
the inhomogenity of the sample itself is important as part of the origin of the
metal - insulator phase separation.Comment: 4 pages, 3 figures, accepted for publication in Solid State Commu
First Principles Calculation of Elastic Properties of Solid Argon at High Pressures
The density and the elastic stiffness coefficients of fcc solid argon at high
pressures from 1 GPa up to 80 GPa are computed by first-principles
pseudopotential method with plane-wave basis set and the generalized gradient
approximation (GGA). The result is in good agreement with the experimental
result recently obtained with the Brillouin spectroscopy by Shimizu et al.
[Phys. Rev. Lett. 86, 4568 (2001)]. The Cauchy condition was found to be
strongly violated as in the experimental result, indicating large contribution
from non-central many-body force. The present result has made it clear that the
standard density functional method with periodic boundary conditions can be
successfully applied for calculating elastic properties of rare gas solids at
high pressures in contrast to those at low pressures where dispersion forces
are important.Comment: 4 pages, 5 figures, submitted to PR
The low-energy phase-only action in a superconductor: a comparison with the XY model
The derivation of the effective theory for the phase degrees of freedom in a
superconductor is still, to some extent, an open issue. It is commonly assumed
that the classical XY model and its quantum generalizations can be exploited as
effective phase-only models. In the quantum regime, however, this assumption
leads to spurious results, such as the violation of the Galilean invariance in
the continuum model. Starting from a general microscopic model, in this paper
we explicitly derive the effective low-energy theory for the phase, up to
fourth-order terms. This expansion allows us to properly take into account
dynamic effects beyond the Gaussian level, both in the continuum and in the
lattice model. After evaluating the one-loop correction to the superfluid
density we critically discuss the qualitative and quantitative differences
between the results obtained within the quantum XY model and within the correct
low-energy theory, both in the case of s-wave and d-wave symmetry of the
superconducting order parameter. Specifically, we find dynamic anharmonic
vertices, which are absent in the quantum XY model, and are crucial to restore
Galilean invariance in the continuum model. As far as the more realistic
lattice model is concerned, in the weak-to-intermediate-coupling regime we find
that the phase-fluctuation effects are quantitatively reduced with respect to
the XY model. On the other hand, in the strong-coupling regime we show that the
correspondence between the microscopically derived action and the quantum XY
model is recovered, except for the low-density regime.Comment: 29 pages, 11 figures. Slightly revised presentation, accepted for
publication in Phys. Rev.
Neutron beam test of CsI crystal for dark matter search
We have studied the response of Tl-doped and Na-doped CsI crystals to nuclear
recoils and 's below 10 keV. The response of CsI crystals to nuclear
recoil was studied with mono-energetic neutrons produced by the
H(p,n)He reaction. This was compared to the response to Compton
electrons scattered by 662 keV -ray. Pulse shape discrimination between
the response to these 's and nuclear recoils was studied, and quality
factors were estimated. The quenching factors for nuclear recoils were derived
for both CsI(Na) and CsI(Tl) crystals.Comment: 21pages, 14figures, submitted to NIM
Continuum of vasodilator stress from rest to contrast medium to adenosine hyperemia for fractional flow reserve assessment
Objectives:
This study compared the diagnostic performance with adenosine-derived fractional flow reserve (FFR) ≤0.8 of contrast-based FFR (cFFR), resting distal pressure (Pd)/aortic pressure (Pa), and the instantaneous wave-free ratio (iFR).
Background:
FFR objectively identifies lesions that benefit from medical therapy versus revascularization. However, FFR requires maximal vasodilation, usually achieved with adenosine. Radiographic contrast injection causes submaximal coronary hyperemia. Therefore, intracoronary contrast could provide an easy and inexpensive tool for predicting FFR.
Methods:
We recruited patients undergoing routine FFR assessment and made paired, repeated measurements of all physiology metrics (Pd/Pa, iFR, cFFR, and FFR). Contrast medium and dose were per local practice, as was the dose of intracoronary adenosine. Operators were encouraged to perform both intracoronary and intravenous adenosine assessments and a final drift check to assess wire calibration. A central core lab analyzed blinded pressure tracings in a standardized fashion.
Results:
A total of 763 subjects were enrolled from 12 international centers. Contrast volume was 8 ± 2 ml per measurement, and 8 different contrast media were used. Repeated measurements of each metric showed a bias <0.005, but a lower SD (less variability) for cFFR than resting indexes. Although Pd/Pa and iFR demonstrated equivalent performance against FFR ≤0.8 (78.5% vs. 79.9% accuracy; p = 0.78; area under the receiver-operating characteristic curve: 0.875 vs. 0.881; p = 0.35), cFFR improved both metrics (85.8% accuracy and 0.930 area; p < 0.001 for each) with an optimal binary threshold of 0.83. A hybrid decision-making strategy using cFFR required adenosine less often than when based on either Pd/Pa or iFR.
Conclusions:
cFFR provides diagnostic performance superior to that of Pd/Pa or iFR for predicting FFR. For clinical scenarios or health care systems in which adenosine is contraindicated or prohibitively expensive, cFFR offers a universal technique to simplify invasive coronary physiological assessments. Yet FFR remains the reference standard for diagnostic certainty as even cFFR reached only ∼85% agreement
Hamiltonian theory of gaps, masses and polarization in quantum Hall states: full disclosure
I furnish details of the hamiltonian theory of the FQHE developed with Murthy
for the infrared, which I subsequently extended to all distances and apply it
to Jain fractions \nu = p/(2ps + 1). The explicit operator description in terms
of the CF allows one to answer quantitative and qualitative issues, some of
which cannot even be posed otherwise. I compute activation gaps for several
potentials, exhibit their particle hole symmetry, the profiles of charge
density in states with a quasiparticles or hole, (all in closed form) and
compare to results from trial wavefunctions and exact diagonalization. The
Hartree-Fock approximation is used since much of the nonperturbative physics is
built in at tree level. I compare the gaps to experiment and comment on the
rough equality of normalized masses near half and quarter filling. I compute
the critical fields at which the Hall system will jump from one quantized value
of polarization to another, and the polarization and relaxation rates for half
filling as a function of temperature and propose a Korringa like law. After
providing some plausibility arguments, I explore the possibility of describing
several magnetic phenomena in dirty systems with an effective potential, by
extracting a free parameter describing the potential from one data point and
then using it to predict all the others from that sample. This works to the
accuracy typical of this theory (10 -20 percent). I explain why the CF behaves
like free particle in some magnetic experiments when it is not, what exactly
the CF is made of, what one means by its dipole moment, and how the comparison
of theory to experiment must be modified to fit the peculiarities of the
quantized Hall problem
Fluctuating diamagnetism in underdoped high temperature superconductors
The fluctuation induced diamagnetism of underdoped high temperature
superconductors is studied in the framework of the Lawrence-Doniach model. By
taking into account the fluctuations of the phase of the order parameter only,
the latter reduces to a layered XY-model describing a liquid of vortices which
can be either thermally excited or induced by the external magnetic field. The
diamagnetic response is given by a current-current correlation function which
is evaluated using the Coulomb gas analogy. Our results are then applied to
recent measurements of fluctuation diamagnetism in underdoped YBCO. They allow
to understand both the observed anomalous temperature dependence of the
zero-field susceptibility and the two distinct regimes appearing in the
magnetic field dependence of the magnetization.Comment: 12 pages, 4 figures included, accepted for publication in PR
Singularities in the Fermi liquid description of a partially filled Landau level and the energy gaps of fractional quantum Hall states
We consider a two dimensional electron system in an external magnetic field
at and near an even denominator Landau level filling fraction. Using a
fermionic Chern--Simons approach we study the description of the system's low
energy excitations within an extension of Landau's Fermi liquid theory. We
calculate perturbatively the effective mass and the quasi--particle interaction
function characterizing this description. We find that at an even denominator
filling fraction the fermion's effective mass diverges logarithmically at the
Fermi level, and argue that this divergence allows for an {\it exact}
calculation of the energy gaps of the fractional quantized Hall states
asymptotically approaching these filling fractions. We find that the
quasi--particle interaction function approaches a delta function. This singular
behavior leads to a cancelation of the diverging effective mass from the long
wavelength low frequency linear response functions at even denominator filling
fractions.Comment: 46 pages, RevTeX, 5 figures included in a uuencoded postscript file.
Minor revisions relative to the original version. The paper will be published
in the Physical Review B, and can be retrieved from the World Wide Web, in
http://cmtw.harvard.edu/~ster
- …