4,186 research outputs found
Recommended from our members
Enhanced antigen presentation and immunostimulation of dendritic cells using acid-degradable cationic nanoparticles.
Acid-degradable cationic nanoparticles encapsulating a model antigen (i.e., ovalbumin) were prepared by inverse microemulsion polymerization with acid-cleavable acetal cross-linkers. Incubation of these degradable nanoparticles with dendritic cells derived from bone marrow (BMDCs) resulted in the enhanced presentation of ovalbumin-derived peptides, as quantified by B3Z cells, a CD8+ T cell hybridoma. The cationic nature of the particles contributed to the increased surface endocytosis (or phagocytosis) observed with BMDCs, which is the first barrier to overcome for successful antigen delivery. The acid sensitivity of the particles served to direct more ovalbumin antigens to be processed into the appropriately trimmed peptide fragments and presented via the major histocompatibility complex (MHC) class I pathway following hydrolysis within the acidic lysosomes. It was also shown that adjuvant molecules such as unmethylated CpG oligonucleotides (CpG ODN) and anti-interleukin-10 oligonucleotides (AS10 ODN) could be co-delivered with the protein antigen for maximized cellular immune response
UBR2 of the N-end rule pathway is required for chromosome stability via histone ubiquitylation in spermatocytes and somatic cells
The N-end rule pathway is a proteolytic system in which its recognition components (N-recognins) recognize destabilizing N-terminal residues of short-lived proteins as an essential element of specific degrons, called N-degrons. The RING E3 ligases UBR2 and UBR1 are major N-recognins that share size (200 kDa), conserved domains and substrate specificities to N-degrons. Despite the known function of the N-end rule pathway in degradation of cytosolic proteins, the major phenotype of UBR2-deficient male mice is infertility caused by arrest of spermatocytes at meiotic prophase I. UBR2-deficient spermatocytes are impaired in transcriptional silencing of sex chromosome-linked genes and ubiquitylation of histone H2A. In this study we show that the recruitment of UBR2 to meiotic chromosomes spatiotemporally correlates to the induction of chromatin-associated ubiquitylation, which is significantly impaired in UBR2-deficient spermatocytes. UBR2 functions as a scaffold E3 that promotes HR6B/UbcH2-dependent ubiquitylation of H2A and H2B but not H3 and H4, through a mechanism distinct from typical polyubiquitylation. The E3 activity of UBR2 in histone ubiquitylation is allosterically activated by dipeptides bearing destabilizing N-terminal residues. Insufficient monoubiquitylation and polyubiquitylation on UBR2-deficient meiotic chromosomes correlate to defects in double strand break (DSB) repair and other meiotic processes, resulting in pachytene arrest at stage IV and apoptosis. Some of these functions of UBR2 are observed in somatic cells, in which UBR2 is a chromatin-binding protein involved in chromatin-associated ubiquitylation upon DNA damage. UBR2-deficient somatic cells show an array of chromosomal abnormalities, including hyperproliferation, chromosome instability, and hypersensitivity to DNA damage-inducing reagents. UBR2-deficient mice enriched in C57 background die upon birth with defects in lung expansion and neural development. Thus, UBR2, known as the recognition component of a major cellular proteolytic system, is associated with chromatin and controls chromatin dynamics and gene expression in both germ cells and somatic cells. © 2012 Kwon et al
Transformation of zinc-concentrate in surface and subsurface environments: Implications for assessing zinc mobility/toxicity and choosing an optimal remediation strategy
Zinc contamination in near- and sub-surface environments is a serious threat to many ecosystems and to public health. Sufficient understanding of Zn speciation and transport mechanisms is therefore critical to evaluating its risk to the environment and to developing remediation strategies. The geochemical and mineralogical characteristics of contaminated soils in the vicinity of a Zn ore transportation route were thoroughly investigated using a variety of analytical techniques (sequential extraction, XRF, XRD, SEM, and XAFS). Imported Zn-concentrate (ZnS) was deposited in a receiving facility and dispersed over time to the surrounding roadside areas and rice-paddy soils. Subsequent physical and chemical weathering resulted in dispersal into the subsurface. The species identified in the contaminated areas included Zn-sulfide, Zn-carbonate, other O-coordinated Zn-minerals, and Zn species bound to Fe/Mn oxides or clays, as confirmed by XAFS spectroscopy and sequential extraction. The observed transformation from S-coordinated Zn to O-coordinated Zn associated with minerals suggests that this contaminant can change into more soluble and labile forms as a result of weathering. For the purpose of developing a soil washing remediation process, the contaminated samples were extracted with dilute acids. The extraction efficiency increased with the increase of O-coordinated Zn relative to S-coordinated Zn in the sediment. This study demonstrates that improved understanding of Zn speciation in contaminated soils is essential for well-informed decision making regarding metal mobility and toxicity, as well as for choosing an appropriate remediation strategy using soil washing
Health promoting potential of herbal teas and tinctures from Artemisia campestris subsp maritima: from traditional remedies to prospective products
This work explored the biotechnological potential of the medicinal halophyte Artemisia campestris subsp. maritima (dune wormwood) as a source of health promoting commodities. For that purpose, infusions, decoctions and tinctures were prepared from roots and aerial-organs and evaluated for in vitro antioxidant, anti-diabetic and tyrosinase-inhibitory potential, and also for polyphenolic and mineral contents and toxicity. The dune wormwood extracts had high polyphenolic content and several phenolics were identified by ultra-high performance liquid chromatography-photodiode array-mass-spectrometry (UHPLC-PDA-MS). The main compounds were quinic, chlorogenic and caffeic acids, coumarin sulfates and dicaffeoylquinic acids; several of the identified phytoconstituents are here firstly reported in this A. campestris subspecies. Results obtained with this plant's extracts point to nutritional applications as mineral supplementary source, safe for human consumption, as suggested by the moderate to low toxicity of the extracts towards mammalian cell lines. The dune wormwood extracts had in general high antioxidant activity and also the capacity to inhibit a-glucosidase and tyrosinase. In summary, dune wormwood extracts are a significant source of polyphenolic and mineral constituents, antioxidants and a-glucosidase and tyrosinase inhibitors, and thus, relevant for different commercial segments like the pharmaceutical, cosmetic and/or food industries.FCT - Foundation for Science and Technology [CCMAR/Multi/04326/2013]; Portuguese National Budget; FCT [IF/00049/2012, SFRH/BD/94407/2013]; Research Foundation - Flanders (FWO) [12M8315N]info:eu-repo/semantics/publishedVersio
Femtosecond Dynamics in Single Wall Carbon Nanotube/Poly(3-Hexylthiophene) Composites
Femtosecond transient absorption measurements on single wall carbon nanotube/poly(3-hexylthiophene) composites are used to investigate the relaxation dynamics of this blended material. The influence of the addition of nanotubes in polymer matrix on the ultrashort relaxation dynamics is examined in detail. The introduction of nanotube/polymer heterojunctions enhances the exciton dissociation and quenches the radiative recombination of composites. The relaxation dynamics of these composites are compared with the fullerene derivative-polymer composites with the same matrix. These results provide explanation to the observed photovoltaic performance of two types of composites
Magnetism, FeS colloids, and Origins of Life
A number of features of living systems: reversible interactions and weak
bonds underlying motor-dynamics; gel-sol transitions; cellular connected
fractal organization; asymmetry in interactions and organization; quantum
coherent phenomena; to name some, can have a natural accounting via
interactions, which we therefore seek to incorporate by expanding the horizons
of `chemistry-only' approaches to the origins of life. It is suggested that the
magnetic 'face' of the minerals from the inorganic world, recognized to have
played a pivotal role in initiating Life, may throw light on some of these
issues. A magnetic environment in the form of rocks in the Hadean Ocean could
have enabled the accretion and therefore an ordered confinement of
super-paramagnetic colloids within a structured phase. A moderate H-field can
help magnetic nano-particles to not only overcome thermal fluctuations but also
harness them. Such controlled dynamics brings in the possibility of accessing
quantum effects, which together with frustrations in magnetic ordering and
hysteresis (a natural mechanism for a primitive memory) could throw light on
the birth of biological information which, as Abel argues, requires a
combination of order and complexity. This scenario gains strength from
observations of scale-free framboidal forms of the greigite mineral, with a
magnetic basis of assembly. And greigite's metabolic potential plays a key role
in the mound scenario of Russell and coworkers-an expansion of which is
suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed
Krishnaswami Alladi, Springer 201
Clothing insulation and temperature, layer and mass of clothing under comfortable environmental conditions
This study was designed to investigate the relationship between the microclimate temperature and clothing insulation (Icl) under comfortable environmental conditions. In total, 20 subjects (13 women, 7 men) took part in this study. Four environmental temperatures were chosen: 14??C (to represent March/April), 25??C (May/June), 29??C (July/August), and 23??C (September/October). Wind speed (0.14ms-1) and humidity (45%) were held constant. Clothing microclimate temperatures were measured at the chest (Tchest) and on the interscapular region (Tscapular). Clothing temperature of the innermost layer (Tinnermost) was measured on this layer 30 mm above the centre of the left breast. Subjects were free to choose the clothing that offered them thermal comfort under each environmental condition. We found the following results. 1) All clothing factors except the number of lower clothing layers (Llower), showed differences between the different environmental conditions (P<0.05). The ranges of Tchest were 31.6 to 33.5??C and 32.2 to 33.4??C in Tscapular. The range of Tinnermost was 28.6 to 32.0??C. The range of the upper clothing layers (Lupper) and total clothing mass (Mtotal) was 1.1 to 3.2 layers and 473 to 1659 g respectively. The range of Icl was 0.78 to 2.10 clo. 2) Post hoc analyses showed that analysis of Tinnermost produced the same results as for that of Icl. Likewise, the analysis of Lupper produced the same result as the analysis of the number of total layers (Ltotal) within an outfit. 3) Air temperature (ta) had positive relationships with Tchest and Tscapular and with Tinnermost but had inverse correlations with Icl, Mtotal, Lupper and Ltotal. Tchest, Tscapular, and Tinnermost increased as ta rose. 4) Icl had inverse relationships with Tchest and Tinnermost, but positive relationships with Mtotal, Lupper and Ltotal. Icl could be estimated by Mtotal, Lupper, and Tscapular using a multivariate linear regression model. 5) Lupper had positive relationships with Icl and Mtotal, but Llower did not. Subjects hardly changed Llower under environmental comfort conditions between March and October. This indicates that each of the Tchest, Mtotal, and Lupper was a factor in predicting Icl. Tinnermost might also be a more influential factor than the clothing microclimate temperature.open1
Dopamine Regulation of Amygdala Inhibitory Circuits for Expression of Learned Fear.
GABAergic signaling in the amygdala controls learned fear, and its dysfunction potentially contributes to posttraumatic stress disorder (PTSD). We find that sub-threshold fear conditioning leads to dopamine receptor D4-dependent long-term depression (LTD) of glutamatergic excitatory synapses by increasing inhibitory inputs onto neurons of the dorsal intercalated cell mass (ITC) in the amygdala. Pharmacological, genetic, and optogenetic manipulations of the amygdala regions centered on the dorsal ITC reveal that this LTD limits less salient experiences from forming persistent memories. In further support of the idea that LTD has preventive and discriminative roles, we find that LTD at the dorsal ITC is impaired in mice exhibiting PTSD-like behaviors. These findings reveal a novel role of inhibitory circuits in the amygdala, which serves to dampen and restrict the level of fear expression. This mechanism is interfered with by stimuli that give rise to PTSD and may also be recruited for fear-related psychiatric diseases.1110Ysciescopu
Microwave studies of the fractional Josephson effect in HgTe-based Josephson junctions
The rise of topological phases of matter is strongly connected to their
potential to host Majorana bound states, a powerful ingredient in the search
for a robust, topologically protected, quantum information processing. In order
to produce such states, a method of choice is to induce superconductivity in
topological insulators. The engineering of the interplay between
superconductivity and the electronic properties of a topological insulator is a
challenging task and it is consequently very important to understand the
physics of simple superconducting devices such as Josephson junctions, in which
new topological properties are expected to emerge. In this article, we review
recent experiments investigating topological superconductivity in topological
insulators, using microwave excitation and detection techniques. More
precisely, we have fabricated and studied topological Josephson junctions made
of HgTe weak links in contact with two Al or Nb contacts. In such devices, we
have observed two signatures of the fractional Josephson effect, which is
expected to emerge from topologically-protected gapless Andreev bound states.
We first recall the theoretical background on topological Josephson junctions,
then move to the experimental observations. Then, we assess the topological
origin of the observed features and conclude with an outlook towards more
advanced microwave spectroscopy experiments, currently under development.Comment: Lectures given at the San Sebastian Topological Matter School 2017,
published in "Topological Matter. Springer Series in Solid-State Sciences,
vol 190. Springer
- …