9,685 research outputs found

    Automated Classification of 2000 Bright IRAS Sources

    Full text link
    An Artificial Neural Network (ANN) has been employed using a supervised back-propagation scheme to classify 2000 bright sources from the Calgary database of IRAS (Infrared Astronomy Satellite) spectra in the wavelength region of 8-23 microns. The data base has been classified into 17 pre-determined classes based on spectral morphology. We have been able to classify more than 80 percent of the 2000 sources correctly at the first instance. The speed and robustness of the scheme will allow us to classify the whole of LRS database, containing more than 50,000 sources in the future.Comment: 26 pages, To appear in ApJS after July 200

    Josephson Vortex States in Intermediate Fields

    Full text link
    Motivated by recent resistance data in high TcT_c superconductors in fields {\it parallel} to the CuO layers, we address two issues on the Josephson-vortex phase diagram, the appearances of structural transitions on the observed first order transition (FOT) curve in intermediate fields and of a lower critical point of the FOT line. It is found that some rotated pinned solids are more stable than the ordinary rhombic pinned solids with vacant interlayer spacings and that, due to the vertical portion in higher fields of the FOT line, the FOT tends to be destroyed by creating a lower critical point.Comment: 12 pages, 3 figures. To appear in J.Phys.Soc.Jpn. 71, No.2 (February, 2002

    The Circumstellar Extinction of Planetary Nebulae

    Get PDF
    We analyze the dependence of circumstellar extinction on core mass for the brightest planetary nebulae (PNe) in the Magellanic Clouds and M31. We show that in all three galaxies, a statistically significant correlation exists between the two quantities, such that high core mass objects have greater extinction. We model this behavior, and show that the relation is a simple consequence of the greater mass loss and faster evolution times of high mass stars. The relation is important because it provides a natural explanation for the invariance of the [O III] 5007 planetary nebula luminosity function (PNLF) with population age: bright Population I PNe are extinguished below the cutoff of the PNLF. It also explains the counter-intuitive observation that intrinsically luminous Population I PNe often appear fainter than PNe from older, low-mass progenitors.Comment: 12 pages, 2 figures, accepted for ApJ, April 10, 199

    Detecting and Characterizing Small Dense Bipartite-like Subgraphs by the Bipartiteness Ratio Measure

    Full text link
    We study the problem of finding and characterizing subgraphs with small \textit{bipartiteness ratio}. We give a bicriteria approximation algorithm \verb|SwpDB| such that if there exists a subset SS of volume at most kk and bipartiteness ratio θ\theta, then for any 0<ϵ<1/20<\epsilon<1/2, it finds a set SS' of volume at most 2k1+ϵ2k^{1+\epsilon} and bipartiteness ratio at most 4θ/ϵ4\sqrt{\theta/\epsilon}. By combining a truncation operation, we give a local algorithm \verb|LocDB|, which has asymptotically the same approximation guarantee as the algorithm \verb|SwpDB| on both the volume and bipartiteness ratio of the output set, and runs in time O(ϵ2θ2k1+ϵln3k)O(\epsilon^2\theta^{-2}k^{1+\epsilon}\ln^3k), independent of the size of the graph. Finally, we give a spectral characterization of the small dense bipartite-like subgraphs by using the kkth \textit{largest} eigenvalue of the Laplacian of the graph.Comment: 17 pages; ISAAC 201

    Massive expanding torus and fast outflow in planetary nebula NGC 6302

    Full text link
    We present interferometric observations of 12^{12}CO and 13^{13}CO JJ=2-1 emission from the butterfly-shaped, young planetary nebula NGC 6302. The high angular resolution and high sensitivity achieved in our observations allow us to resolve the nebula into two distinct kinematic components: (1) a massive expanding torus seen almost edge-on and oriented in the North-South direction, roughly perpendicular to the optical nebula axis. The torus exhibits very complex and fragmentated structure; (2) high velocity molecular knots moving at high velocity, higher than 20 \kms, and located in the optical bipolar lobes. These knots show a linear position-velocity gradient (Hubble-like flow), which is characteristic of fast molecular outflow in young planetary nebulae. From the low but variable 12^{12}CO/13^{13}CO JJ=2-1 line intensity ratio we conclude that the 12^{12}CO JJ=2-1 emission is optically thick over much of the nebula. Using the optically thinner line 13^{13}CO JJ=2-1 we estimate a total molecular gas mass of \sim 0.1 M_\odot, comparable to the ionized gas mass; the total gas mass of the NGC 6302 nebula, including the massive ionized gas from photon dominated region, is found to be \sim 0.5 M_\odot. From radiative transfer modelling we infer that the torus is seen at inclination angle of 75^\circ with respect to the plane of the sky and expanding at velocity of 15 \kms. Comparison with recent observations of molecular gas in NGC 6302 is also discussed.Comment: 24 pages, 7 figures, accepted for publication in Astrophysical Journa

    Polarimetric Signatures of Sea Ice

    Get PDF
    Physical, structural, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarimetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies for interpretation of sea ice polarimetric signatures

    SUSY structures, representations and Peter-Weyl theorem for S11S^{1|1}

    Full text link
    The real compact supergroup S11S^{1|1} is analized from different perspectives and its representation theory is studied. We prove it is the only (up to isomorphism) supergroup, which is a real form of (C11)×({\mathbf C}^{1|1})^\times with reduced Lie group S1S^1, and a link with SUSY structures on C11{\mathbf C}^{1|1} is established. We describe a large family of complex semisimple representations of S11S^{1|1} and we show that any S11S^{1|1}-representation whose weights are all nonzero is a direct sum of members of our family. We also compute the matrix elements of the members of this family and we give a proof of the Peter-Weyl theorem for S11S^{1|1}
    corecore