15 research outputs found

    Argonaut: A web platform for collaborative multi-omic data visualization and exploration

    Get PDF
    Researchers now generate large multi-omic datasets using increasingly mature mass spectrometry techniques at an astounding pace, facing new challenges of Big Data dissemination, visualization, and exploration. Conveniently, web-based data portals accommodate the complexity of multi-omic experiments and the many experts involved. However, developing these tailored companion resources requires programming expertise and knowledge of web server architecture-a substantial burden for most. Here, we describe Argonaut, a simple, code-free, and user-friendly platform for creating customizable, interactive data-hosting websites. Argonaut carries out real-time statistical analyses of the data, which it organizes into easily sharable projects. Collaborating researchers worldwide can explore the results, visualized through popular plots, and modify them to streamline data interpretation. Increasing the pace and ease of access to multi-omic data, Argonaut aims to propel discovery of new biological insights. We showcase the capabilities of this tool using a published multi-omics dataset on the large mitochondrial protease deletion collection

    A role for the mevalonate pathway in early plant symbiotic signaling

    Get PDF
    Rhizobia and arbuscular mycorrhizal fungi produce signals that are perceived by host legume receptors at the plasma membrane and trigger sustained oscillations of the nuclear and perinuclear Ca(2+) concentration (Ca(2+) spiking), which in turn leads to gene expression and downstream symbiotic responses. The activation of Ca(2+) spiking requires the plasma membrane-localized receptor-like kinase Does not Make Infections 2 (DMI2) as well as the nuclear cation channel DMI1. A key enzyme regulating the mevalonate (MVA) pathway, 3-Hydroxy-3-Methylglutaryl CoA Reductase 1 (HMGR1), interacts with DMI2 and is required for the legume-rhizobium symbiosis. Here, we show that HMGR1 is required to initiate Ca(2+) spiking and symbiotic gene expression in Medicago truncatula roots in response to rhizobial and arbuscular mycorrhizal fungal signals. Furthermore, MVA, the direct product of HMGR1 activity, is sufficient to induce nuclear-associated Ca(2+) spiking and symbiotic gene expression in both wild-type plants and dmi2 mutants, but interestingly not in dmi1 mutants. Finally, MVA induced Ca(2+) spiking in Human Embryonic Kidney 293 cells expressing DMI1. This demonstrates that the nuclear cation channel DMI1 is sufficient to support MVA-induced Ca(2+) spiking in this heterologous system

    Structural Characterization of Methylenedianiline Regioisomers by Ion Mobility-Mass Spectrometry, Tandem Mass Spectrometry, and Computational Strategies: I. Electrospray Spectra of 2‑Ring Isomers

    No full text
    Purified methylenedianiline (MDA) regioisomers were structurally characterized and differentiated using tandem mass spectrometry (MS/MS), ion mobility-mass spectrometry (IM-MS), and IM-MS/MS in conjunction with computational methods. It was determined that protonation sites on the isomers can vary depending on the position of amino groups, and the resulting protonation sites play a role in the gas-phase stability of the isomer. We also observed differences in the relative distributions of protonated conformations depending on experimental conditions and instrumentation, which is consistent with previous studies on aniline in the gas phase. This work demonstrates the utility of a multifaceted approach for the study of isobaric species and elucidates why previous MDA studies may have been unable to detect and/or differentiate certain isomers. Such analysis may prove useful in the characterization of larger MDA multimeric species, industrial MDA mixtures, and methylene diphenyl diisocyanate (MDI) mixtures used in polyurethane synthesis

    Structural Characterization of Methylenedianiline Regioisomers by Ion Mobility-Mass Spectrometry, Tandem Mass Spectrometry, and Computational Strategies. 2. Electrospray Spectra of 3‑Ring and 4‑Ring Isomers

    No full text
    Building on results from our previous study of 2-ring methylenedianiline (MDA), a combined mass spectrometry approach utilizing ion mobility-mass spectrometry (IM-MS) and tandem mass spectrometry (MS/MS) coupled with computational methods enables the structural characterization of purified 3-ring and 4-ring MDA regioisomers in this current study. The preferred site of protonation for the 3-ring and 4-ring MDA was determined to be on the amino groups. Additionally, the location of the protonated amine along the MDA multimer was found to influence the gas phase stability of these molecules. Fragmentation mechanisms similar to the 2-ring MDA species were observed for both the 3-ring and 4-ring MDA. The structural characterization of 3-ring and 4-ring MDA isomers using modern MS techniques may aid polyurethane synthesis by the characterization of industrial grade MDA, multimeric MDA species, and methylene diphenyl diisocyanate (MDI) mixtures

    Improved Precursor Characterization for Data-Dependent Mass Spectrometry

    No full text
    Modern ion trap mass spectrometers are capable of collecting up to 60 tandem MS (MS/MS) scans per second, in theory providing acquisition speeds that can sample every eluting peptide precursor presented to the MS system. In practice, however, the precursor sampling capacity enabled by these ultrafast acquisition rates is often underutilized due to a host of reasons (e.g., long injection times and wide analyzer mass ranges). One often overlooked reason for this underutilization is that the instrument exhausts all the peptide features it identifies as suitable for MS/MS fragmentation. Highly abundant features can prevent annotation of lower abundance precursor ions that occupy similar mass-to-charge (<i>m</i>/<i>z</i>) space, which ultimately inhibits the acquisition of an MS/MS event. Here, we present an advanced peak determination (APD) algorithm that uses an iterative approach to annotate densely populated <i>m</i>/<i>z</i> regions to increase the number of peptides sampled during data-dependent LC-MS/MS analyses. The APD algorithm enables nearly full utilization of the sampling capacity of a quadrupole-Orbitrap-linear ion trap MS system, which yields up to a 40% increase in unique peptide identifications from whole cell HeLa lysates (approximately 53 000 in a 90 min LC-MS/MS analysis). The APD algorithm maintains improved peptide and protein identifications across several modes of proteomic data acquisition, including varying gradient lengths, different degrees of prefractionation, peptides derived from multiple proteases, and phosphoproteomic analyses. Additionally, the use of APD increases the number of peptides characterized per protein, providing improved protein quantification. In all, the APD algorithm increases the number of detectable peptide features, which maximizes utilization of the high MS/MS capacities and significantly improves sampling depth and identifications in proteomic experiments

    Evaluation of age-dependent treatment strategies for children and young adults with pineoblastoma : Analysis of pooled European Society for Paediatric Oncology (SIOP-E) and US Head Start data

    No full text
    Background. Pineoblastoma is a rare pineal region brain tumor. Treatment strategies have reflected those for other malignant embryonal brain tumors. Patients and Methods. Original prospective treatment and outcome data from international trial groups were pooled. Cox regression models were developed considering treatment elements as time-dependent covariates. Results. Data on 135 patients with pineoblastoma aged 0.01-20.7 (median 4.9) years were analyzed. Median observation time was 7.3 years. Favorable prognostic factors were age ≥4 years (hazard ratio [HR] for progression-free survival [PFS] 0.270, P < .001) and administration of radiotherapy (HR for PFS 0.282, P < .001). Metastatic disease (HR for PFS 2.015, P = .006), but not postoperative residual tumor, was associated with unfavorable prognosis. In 57 patients <4 years old, 5-year PFS/overall survival (OS) were 11 ± 4%/12 ± 4%. Two patients survived after chemotherapy only, while 3 of 16 treated with craniospinal irradiation (CSI) with boost, and 3 of 5 treated with high-dose chemotherapy (HDCT) and local radiotherapy survived. In 78 patients aged ≥4 years, PFS/OS were 72 ± 7%/73 ± 7% for patients without metastases, and 50 ± 10%/55 ± 10% with metastases. Seventy-three patients received radiotherapy (48 conventionally fractionated CSI, median dose 35.0 [18.0-45.0] Gy, 19 hyperfractionated CSI, 6 local radiotherapy), with (n = 68) or without (n = 6) chemotherapy. The treatment sequence had no impact; application of HDCT had weak impact on survival in older patients. Conclusion. Survival is poor in young children treated without radiotherapy. In these patients, combination of HDCT and local radiotherapy may warrant further evaluation in the absence of more specific or targeted treatments. CSI combined with chemotherapy is effective for older non-metastatic patients

    Evaluation of age-dependent treatment strategies for children and young adults with pineoblastoma

    No full text
    Background.: Pineoblastoma is a rare pineal region brain tumor. Treatment strategies have reflected those for other malignant embryonal brain tumors. Patients and Methods.: Original prospective treatment and outcome data from international trial groups were pooled. Cox regression models were developed considering treatment elements as time-dependent covariates. Results.: Data on 135 patients with pineoblastoma aged 0.01-20.7 (median 4.9) years were analyzed. Median observation time was 7.3 years. Favorable prognostic factors were age >/=4 years (hazard ratio [HR] for progression-free survival [PFS] 0.270, P < .001) and administration of radiotherapy (HR for PFS 0.282, P < .001). Metastatic disease (HR for PFS 2.015, P = .006), but not postoperative residual tumor, was associated with unfavorable prognosis. In 57 patients <4 years old, 5-year PFS/overall survival (OS) were 11 +/- 4%/12 +/- 4%. Two patients survived after chemotherapy only, while 3 of 16 treated with craniospinal irradiation (CSI) with boost, and 3 of 5 treated with high-dose chemotherapy (HDCT) and local radiotherapy survived. In 78 patients aged >/=4 years, PFS/OS were 72 +/- 7%/73 +/- 7% for patients without metastases, and 50 +/- 10%/55 +/- 10% with metastases. Seventy-three patients received radiotherapy (48 conventionally fractionated CSI, median dose 35.0 [18.0-45.0] Gy, 19 hyperfractionated CSI, 6 local radiotherapy), with (n = 68) or without (n = 6) chemotherapy. The treatment sequence had no impact; application of HDCT had weak impact on survival in older patients. Conclusion.: Survival is poor in young children treated without radiotherapy. In these patients, combination of HDCT and local radiotherapy may warrant further evaluation in the absence of more specific or targeted treatments. CSI combined with chemotherapy is effective for older non-metastatic patients
    corecore