3,691 research outputs found
The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta
Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities.115Ysciescopu
Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications
Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.113Ysciescopuskc
Human brain anatomy reflects separable genetic and environmental components of socioeconomic status
Socioeconomic status (SES) correlates with brain structure, a relation of interest given the long-observed relations of SES to cognitive abilities and health. Yet, major questions remain open, in particular, the pattern of causality that underlies this relation. In an unprecedently large study, here, we assess genetic and environmental contributions to SES differences in neuroanatomy. We first establish robust SES–gray matter relations across a number of brain regions, cortical and subcortical. These regional correlates are parsed into predominantly genetic factors and those potentially due to the environment. We show that genetic effects are stronger in some areas (prefrontal cortex, insula) than others. In areas showing less genetic effect (cerebellum, lateral temporal), environmental factors are likely to be influential. Our results imply a complex interplay of genetic and environmental factors that influence the SES-brain relation and may eventually provide insights relevant to policy
Recommended from our members
BCL6 enables Ph+ acute lymphoblastic leukaemia cells to survive BCR-ABL1 kinase inhibition.
Tyrosine kinase inhibitors (TKIs) are widely used to treat patients with leukaemia driven by BCR-ABL1 (ref. 1) and other oncogenic tyrosine kinases. Recent efforts have focused on developing more potent TKIs that also inhibit mutant tyrosine kinases. However, even effective TKIs typically fail to eradicate leukaemia-initiating cells (LICs), which often cause recurrence of leukaemia after initially successful treatment. Here we report the discovery of a novel mechanism of drug resistance, which is based on protective feedback signalling of leukaemia cells in response to treatment with TKI. We identify BCL6 as a central component of this drug-resistance pathway and demonstrate that targeted inhibition of BCL6 leads to eradication of drug-resistant and leukaemia-initiating subclones
The Role of Repeated Exposure to Multimodal Input in Incidental Acquisition of Foreign Language Vocabulary
Prior research has reported incidental vocabulary acquisition with complete beginners in a foreign language (FL), within 8 exposures to auditory and written FL word forms presented with a picture depicting their meaning. However, important questions remain about whether acquisition occurs with fewer exposures to FL words in a multimodal situation and whether there is a repeated exposure effect. Here we report a study where the number of exposures to FL words in an incidental learning phase varied between 2, 4, 6, and 8 exposures. Following the incidental learning phase, participants completed an explicit learning task where they learned to recognize written translation equivalents of auditory FL word forms, half of which had occurred in the incidental learning phase. The results showed that participants performed better on the words they had previously been exposed to, and that this incidental learning effect occurred from as little as 2 exposures to the multimodal stimuli. In addition, repeated exposure to the stimuli was found to have a larger impact on learning during the first few exposures and decrease thereafter, suggesting that the effects of repeated exposure on vocabulary acquisition are not necessarily constant
Application of Ozone-Assisted Membrane Cleaning for Natural Organic Matter Fouled Membranes
The popularity of membrane technology in water treatment has been rising for over last 50 years due to wide range of filtration processes and applications, cost effective production and installation as well as safe and efficient water production. However, the development and improvement of membranes is ongoing due to number of weaknesses. Membrane fouling is a major drawback of membrane application in water and waste water treatment. Mostly caused by natural organic matter (NOM), fouling forms a layer on top of the membrane and blocks pores reducing the water permeation and can be potentially destructive to the membrane structure. The issue of membrane fouling can be addressed during membrane manufacturing, maintenance and operation. In the current study, the graphene-based nanomaterials (GBN) were incorporated in polyvinylidene fluoride (PVDF) to manufacture membranes via the phase-inversion technique. The resulting membranes show significant improvement to the properties of the pure PVDF membranes and their antifouling ability. The addition of GBN enhanced the water permeation by over 79% as a result of increased membrane hydrophilicity. Although this enhancement is beneficial, membrane fouling remained an issue despite the observed improvement. In this study, ozone, which is an effective oxidant, was evaluated as a novel technique for the cleaning of humic acid-fouled membranes. When ozone cleaning was applied to the humic acid-fouled membranes, reestablishment of close to original flux values was observed after just 30 min of cleaning. This statement is supported by SEM images that give an insight into the fouling of the membrane surface after the application of the cleaning methods. The data indicate that ozone is an effective technique for membrane cleaning against NOM-induced fouling
- …