7 research outputs found

    Making new media : creative production and digital literacies

    No full text
    hNSCs express diverse trophic factors. (A) In vitro proliferating and differentiated hNSCs expressed BDNF, NTF3, NTF4, NGF, VEGF, FGF2, and GDNF. (B) Western blotting analysis showed that hNSCs secreted higher levels of BDNF, NTF3, NTF4, NGF, and VEGF into the culture medium than human foreskin fibroblasts secrete. (TIFF 127 kb

    Additional file 6: Figure S6. of Human neural stem cells alleviate Alzheimer-like pathology in a mouse model

    No full text
    NSE/APPsw transgenic mouse-derived brain slices treated with BDNF-depleted CM. (A) Western blot showed that hNSCs secreted high level of BDNF into the cultured medium (lane 1; CM), and anti-BDNF antibody-mediated immunoprecipitation effectively removed BDNF in CM (lane 2; BDNF-depleted CM). Another SDS-PAGE gel was in parallel performed with silver staining to verify even loading. (B) Brain slices treated with DMEM (Ctr), CM, BDNF-depleted CM. Western blot analysis of phosphorylated tau (AT180) and BACE1 (n = 3 per group, where n is the number of experiments). All data represent mean ± SEM. Error bars indicate ± SEM. Mann–Whitney U-test, *p < 0.05. (TIFF 2110 kb

    Additional file 4: Figure S4. of Human neural stem cells alleviate Alzheimer-like pathology in a mouse model

    No full text
    The expression of Aβ-degrading enzymes in both in vivo and in vitro. (A) Transplantation of hNSCs (NSC, n = 7) did not significantly alter the levels of Mme and Ide expression in NSE/APPsw transgenic mice compared with vehicle injection (Veh, n = 6). (B) In vitro expression of Aβ-degrading enzymes in hNSCs. hNSCs under proliferation and differentiation conditions expressed IDE, MME, ECE1 (endothelin converting enzyme 1), ECE2 (endothelin converting enzyme 2), MMP2 (matrix metalloproteinase 2), PLAT (plasminogen activator, tissue), PLAU (plasminogen activator, urokinase), ACE (angiotensin 1 converting enzyme), and CTSB (cathepsin B). On western blot, there were no differences in the levels of Aβ42 in the media containing 1 μM soluble Aβ42 peptides between wells with and without incubation with hNSCs for 2 days. The number of mice (n) in A is indicated. All data represent mean ± SEM. Error bars indicate ± SEM. (TIFF 3170 kb

    Additional file 1: Figure S1. of Human neural stem cells alleviate Alzheimer-like pathology in a mouse model

    No full text
    GFP expression by lenti-GFP-transduced hNSCs. Proliferating lenti-GFP-transduced hNSCs form neurospheres in culture dishes (A) and express GFP (B). Flow cytometry analysis using FlowJo (version 9.3.3) software showed that 94.5 % of all cells are GFP-positive (blue line histogram in C). The red line histogram is the negative control. Scale bar, 100 μm. (TIFF 310 kb

    Design of Magnetically Labeled Cells (Mag-Cells) for in Vivo Control of Stem Cell Migration and Differentiation

    No full text
    Cell-based therapies are attractive for treating various degenerative disorders and cancer but delivering functional cells to the region of interest in vivo remains difficult. The problem is exacerbated in dense biological matrices such as solid tissues because these environments impose significant steric hindrances for cell movement. Here, we show that neural stem cells transfected with zinc-doped ferrite magnetic nanoparticles (ZnMNPs) can be pulled by an external magnet to migrate to the desired location in the brain. These magnetically labeled cells (Mag-Cells) can migrate because ZnMNPs generate sufficiently strong mechanical forces to overcome steric hindrances in the brain tissues. Once at the site of lesion, Mag-Cells show enhanced neuronal differentiation and greater secretion of neurotrophic factors than unlabeled control stem cells. Our study shows that ZnMNPs activate zinc-mediated Wnt signaling to facilitate neuronal differentiation. When implemented in a rodent brain stroke model, Mag-Cells led to significant recovery of locomotor performance in the impaired limbs of the animals. Our findings provide a simple magnetic method for controlling migration of stem cells with high therapeutic functions, offering a valuable tool for other cell-based therapies
    corecore