1,162 research outputs found

    Putative cell adhesion membrane protein Vstm5 regulates neuronal morphology and migration in the central nervous system

    Get PDF
    During brain development, dynamic changes in neuronal membranes perform critical roles in neuronal morphogenesis and migration to create functional neural circuits. Among the proteins that induce membrane dynamics, cell adhesion molecules are important in neuronal membrane plasticity. Here, we report that V-set and transmembrane domain-containing protein 5 (Vstm5), a cell-adhesion-like molecule belonging to the Ig superfamily, was found in mouse brain. Knock-down of Vstm5 in cultured hippocampal neurons markedly reduced the complexity of dendritic structures, as well as the number of dendritic filopodia. Vstm5 also regulates neuronal morphology by promoting dendritic protrusions that later develop into dendritic spines. Using electroporationin utero, we found that Vstm5 overexpression delayed neuronal migration and induced multiple branches in leading processes during corticogenesis. These results indicate that Vstm5 is a new cell-adhesion-like molecule and is critically involved in synaptogenesis and corticogenesis by promoting neuronal membrane dynamics.SIGNIFICANCE STATEMENTNeuronal migration and morphogenesis play critical roles in brain development and function. In this study, we demonstrate for the first time that V-set and transmembrane domain-containing protein 5 (Vstm5), a putative cell adhesion membrane protein, modulates both the position and complexity of central neurons by altering their membrane morphology and dynamics. Vstm5 is also one of the target genes responsible for variations in patient responses to treatments for major depressive disorder. Our results provide the first evidence that Vstm5 is a novel factor involved in the modulation of the neuronal membrane and a critical element in normal neural circuit formation during mammalian brain development.</jats:p

    Ubiquitin-dependent proteasomal degradation of AMPK gamma subunit by Cereblon inhibits AMPK activity

    Get PDF
    Cereblon (CRBN), a substrate receptor for Cullin-ring E3 ubiquitin ligase (CRL), is a major target protein of immunomodulatory drugs. An earlier study demonstrated that CRBN directly interacts with the catalytic α subunit of AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis, down-regulating the enzymatic activity of AMPK. However, it is not clear how CRBN modulates AMPK activity. To investigate the mechanism of CRBN-dependent AMPK inhibition, we measured protein levels of each AMPK subunit in brains, livers, lungs, hearts, spleens, skeletal muscles, testes, kidneys, and embryonic fibroblasts from wild-type and Crbn^(−/−) mice. Protein levels and stability of the regulatory AMPKγ subunit were increased in Crbn^(−/−) mice. Increased stability of AMPKγ in Crbn^(−/−) MEFs was dramatically reduced by exogenous expression of Crbn. In wild-type MEFs, the proteasomal inhibitor MG132 blocked degradation of AMPKγ. We also found that CRL4^(CRBN) directly ubiquitinated AMPKγ. Taken together, these findings suggest that CRL4^(CRBN) regulates AMPK through ubiquitin-dependent proteasomal degradation of AMPKγ

    Structure and spectral features of H+(H2O)(7): Eigen versus Zundel forms

    Get PDF
    The two dimensional (2D) to three dimensional (3D) transition for the protonated water cluster has been controversial, in particular, for H+(H2O)(7). For H+(H2O)(7) the 3D structure is predicted to be lower in energy than the 2D structure at most levels of theory without zero-point energy (ZPE) correction. On the other hand, with ZPE correction it is predicted to be either 2D or 3D depending on the calculational levels. Although the ZPE correction favors the 3D structure at the level of coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] using the aug-cc-pVDZ basis set, the result based on the anharmonic zero-point vibrational energy correction favors the 2D structure. Therefore, the authors investigated the energies based on the complete basis set limit scheme (which we devised in an unbiased way) at the resolution of the identity approximation Moller-Plesset second order perturbation theory and CCSD(T) levels, and found that the 2D structure has the lowest energy for H+(H2O)(7) [though nearly isoenergetic to the 3D structure for D+(D2O)(7)]. This structure has the Zundel-type configuration, but it shows the quantum probabilistic distribution including some of the Eigen-type configuration. The vibrational spectra of MP2/aug-cc-pVDZ calculations and Car-Parrinello molecular dynamics simulations, taking into account the thermal and dynamic effects, show that the 2D Zundel-type form is in good agreement with experiments. (c) 2006 American Institute of Physics.open353

    Functional modulation of AMP-activated protein kinase by cereblon

    Get PDF
    AbstractMutations in cereblon (CRBN), a substrate binding component of the E3 ubiquitin ligase complex, cause a form of mental retardation in humans. However, the cellular proteins that interact with CRBN remain largely unknown. Here, we report that CRBN directly interacts with the α1 subunit of AMP-activated protein kinase (AMPK α1) and inhibits the activation of AMPK activation. The ectopic expression of CRBN reduces phosphorylation of AMPK α1 and, thus, inhibits the enzyme in a nutrient-independent manner. Moreover, AMPK α1 can be potently activated by suppressing endogenous CRBN using CRBN-specific small hairpin RNAs. Thus, CRBN may act as a negative modulator of the AMPK signaling pathway in vivo

    Enhanced TDMA Based Anti-Collision Algorithm with a Dynamic Frame Size Adjustment Strategy for Mobile RFID Readers

    Get PDF
    In the fields of production, manufacturing and supply chain management, Radio Frequency Identification (RFID) is regarded as one of the most important technologies. Nowadays, Mobile RFID, which is often installed in carts or forklift trucks, is increasingly being applied to the search for and checkout of items in warehouses, supermarkets, libraries and other industrial fields. In using Mobile RFID, since the readers are continuously moving, they can interfere with each other when they attempt to read the tags. In this study, we suggest a Time Division Multiple Access (TDMA) based anti-collision algorithm for Mobile RFID readers. Our algorithm automatically adjusts the frame size of each reader without using manual parameters by adopting the dynamic frame size adjustment strategy when collisions occur at a reader. Through experiments on a simulated environment for Mobile RFID readers, we show that the proposed method improves the number of successful transmissions by about 228% on average, compared with Colorwave, a representative TDMA based anti-collision algorithm

    Production of Transgenic Cloned Miniature Pigs with Membrane-bound Human Fas Ligand (FasL) by Somatic Cell Nuclear Transfer

    Get PDF
    Cell-mediated xenograft rejection, including NK cells and CD8+ CTL, is a major obstacle in successful pig-to-human xenotransplantation. Human CD8+ CTL and NK cells display high cytotoxicity for pig cells, mediated at least in part by the Fas/FasL pathway. To prevent cell-mediated xenocytotoxicity, a membrane-bound form of human FasL (mFasL) was generated as an inhibitor for CTL and NK cell cytotoxicity that could not be cleaved by metalloproteinase to produce putative soluble FasL. We produced two healthy transgenic pigs harboring the mFasL gene via somatic cell nuclear transfer (SCNT). In a cytotoxicity assay using transgenic clonal cell lines and transgenic pig ear cells, the rate of CD8+ CTL-mediated cytotoxicity was significantly reduced in transgenic pig&#x27;s ear cells compared with that in normal minipig fetal fibroblasts. Our data indicate that grafts of transgenic pigs expressing membrane-bound human FasL control the cellular immune response to xenografts, creating a window of opportunity to facilitate xenograft survival
    corecore