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Utility of targeted deep sequencing 
for detecting circulating tumor 
DNA in pancreatic cancer patients
Gahee Park  1,2, Joo Kyung Park3, Dae-Soon Son1, Seung-Ho Shin1,4, Yeon Jeong Kim1,  
Hyo-Jeong Jeon1, Jae Lee  1, Woong-Yang Park1,4,5, Kwang Hyuck Lee  3,4 &  
Donghyun Park  1

Targeted deep sequencing across broad genomic regions has been used to detect circulating tumor DNA 
(ctDNA) in pancreatic ductal adenocarcinoma (PDAC) patients. However, since most PDACs harbor a 
mutation in KRAS, sequencing of broad regions needs to be systemically compared to analyzing only 
KRAS mutations for PDAC. Using capture-based targeted deep sequencing, we detected somatic 
tumor mutations in 17 fine needle aspiration biopsy and 69 longitudinal cell-free DNA (cfDNA) samples 
from 17 PDAC patients. KRAS mutations were detected in 10 out of 17 pretreatment patient plasma 
samples. Next, interrogation of genetic alterations in matched primary tumor samples detected ctDNA 
in 12 of 17 pretreatment plasma samples and cfDNA sequencing across the 83 target genes identified 
ctDNA in 15 of 17 cases (88.2% sensitivity). This improved sensitivity of ctDNA detection resulted in 
enhanced tumor burden monitoring when we analyzed longitudinal plasma samples. We found that 
cfDNA sequencing detected the lowest mutant allelic fractions and number of variants when complete 
response or partial response to chemotherapy was achieved. We demonstrated that ctDNA levels 
measured by targeted deep sequencing sensitively indicate the presence of cancer and correlate well 
with clinical responses to therapy and disease progression in PDAC patients.

Pancreatic ductal adenocarcinoma (PDAC) is one of the leading mortality-causing diseases internationally, which 
is due, at least in part, to the lack of a noninvasive biomarker for sensitive and specific disease detection1. Because 
a potentially curative operation that facilitates long-term survival is primarily successful for patients with the clin-
ically localized disease2,3, numerous studies have attempted to identify a highly accurate blood-based biomarker 
for early detection of PDAC. Nonetheless, cancer antigen (CA) 19-9 remains the standard biomarker4, despite 
its unsatisfactory sensitivity and specificity for early detection of disease5, which also limits its role monitoring 
disease burden. Recently, circulating tumor DNA (ctDNA) has been proposed as an alternative to traditional 
noninvasive protein biomarkers due to its potential for use in a wide range of clinical applications for various 
cancers, including PDAC6–8. Because ctDNA is released from tumor cells into the blood, the presence of ctDNA, 
as detected through mutations harbored by the original tumor, is indicative of a tumor and relative tumor bur-
den7,9. Previous studies have reported highly sensitive and specific genetic profiling of plasma DNA, suggesting 
that the use of ctDNA as a liquid biopsy might significantly improve current systems of tumor diagnosis10, tumor 
progression monitoring9, targeted therapies11, and early-stage detection12. While expected to revolutionize can-
cer diagnoses in general13, liquid biopsy based on ctDNA analysis is even more anticipated for particular cancer 
types, such as PDAC, where biopsy is risky and often untenable.

Among the various methods of detecting ctDNA, digital PCR methods, including BEAMing (beads, emulsion, 
amplification, and magnetics), have been effectively utilized to detect a limited number of specific target variants, 
including KRAS, EGFR, and PIK3CA hotspot mutations, across various cancers7,11,14–18. Because mutations in 
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KRAS are observed in >90% of PDAC1 and are likely to be clonal mutations present in the majority of cancer 
cells, they are often identified in plasma as a ctDNA benchmark for PDAC6,18–22. This unique mutational feature 
of PDAC renders digital PCR very attractive for ctDNA detection in PDAC patients via interrogating a few KRAS 
hotspots6,8,18,20.

Despite the considerably high sensitivity of digital PCR, the detection of KRAS mutations in plasma using this 
method has often fallen short of high expectations, as the ctDNA detection rate has averaged as low as 50%6,19–21,23.  
This limitation may be a result of there being low allelic fractions of KRAS mutations in a subset of PDACs24. 
In fact, the allelic fractions of KRAS mutations in PDAC biopsy samples range from homozygous wild-type to 
≥100% mutated KRAS, indicating KRAS-mutated populations might be subclonal in a significant fraction of 
PDAC patients1,24.

Targeted deep sequencing has been employed to interrogate tumor variants across relatively broad genomic 
regions that include many cancer-associated target genes using blood samples from patients with various types 
of cancer9,10,22,25,26. It is now beyond doubt that ctDNA sequencing analysis of broad genomic regions facilitates 
evaluations of the tumor burden25,27, intra-tumor genetic heterogeneity28, emergence of resistant mutations29,30, 
and clonal expansion31 during disease progression. Conversely, interrogation of broad genomic regions requires 
more resources for generation of raw data and subsequent downstream analysis. Additionally, it might generate 
more frequent false positives32, unless detection sensitivity is compromised to a certain degree. Therefore, deep 
sequencing dozens to hundreds of cancer-related genes have to be carefully evaluated to determine if the bene-
fits outweigh the disadvantages, especially for PDAC, where at least one of a few KRAS variants are observed in 
most cases. Here, we evaluated the benefits of investigating 83 target genes to detect ctDNA in pancreatic cancer 
patients and compared the method to testing either KRAS hotspots or genetic variants in their matched biopsy 
samples.

Results
Generation of targeted deep sequencing data for PDAC patients. To evaluate ctDNA detection by 
targeted deep sequencing and its clinical utilities, 17 PDAC patients with available tumor biopsy samples under-
went blood draws for cell-free DNA (cfDNA) testing (Table 1). We profiled a total of 120 samples from these 17 
patients consisting of 17 fine needle aspiration (FNA) biopsies, 34 peripheral blood leucocyte (PBL) samples, and 
69 plasma samples (Supplementary Fig. S1 and Table S1). Of this sequencing data, 17 plasma and 17 PBL samples 
obtained prior to treatment were recently published in our study analyzing sequencing background noise33.

To achieve a mean sequencing depth of ~10,000X (prior to duplicate removal) in a cost-effective manner, 
we designed a pool of RNA baits targeting 83 cancer-associated genes, including hotspots for pancreatic cancer 
(Supplementary Table S2). DNA libraries were constructed from plasma DNA and matched germline DNA (i.e., 
PBL genomic DNA) samples and sequenced on Illumina HiSeq. 2500 as we previously reported33. After excluding 
PCR duplication, the unique coverage depths for the biopsy, plasma DNA, and germline DNA samples averaged 

ID Age Sex Histology Stage TNM
Metastatic 
Site(s) OS Death Regimen Treatment Modality

P2 55 F PDAC IIB T3N1M0 ND 7.9 Yes GEM Op & Chemotherapy

P5 59 F PDAC III T4N1M0 ND 15.4 Yes 1st: FOLFIRINOX 2nd: 
FOLFIRINOX/GEM-P Chemotherapy

P7 59 F PDAC III T4N1M0 ND 12.5 Yes GEM-E Chemotherapy
P10 59 M PDAC IV T3N1M1 Liver 2.3 Yes — Best supportive care only

P11 48 M PDAC IIB T3N1M0 ND 20.2 Yes 1st: CCRT-5FU 2nd: 5FU-
LV 3rd: GEM-Abraxane Op & Chemotherapy

P21 59 M PDAC III T4N1M0 ND 11.9 Yes FOLFIRINOX Chemotherapy
P23 59 F PDAC III T4N1M0 ND 21.2 No GEM-E Chemotherapy
P27 59 F PDAC III T4N1M0 ND 21.2 No GEM-E Chemotherapy
P28 75 M PDAC III T4N1M0 ND 8.9 Yes GEM Chemotherapy

P29 59 M PDAC IV T4N0M1 Liver/ adrenal 
mets 7.4 Yes 1st: GEM-E 2nd: XELOX Chemotherapy

P31 60 M PDAC III T4N0M0 ND 18.1 No GEM-E Chemotherapy
P32 59 F PDAC IV T3N1M1 Liver 16.7 Yes — Best supportive care only
P36 60 M PDAC IV T3N1M1 Lung mets 9.4 Yes GEM Chemotherapy
P37 59 F PDAC IIB T2N1M0 ND 8.2 Yes TS-1 Chemotherapy

P42 59 M PDAC IV T4N1M1 Liver 14.5 Yes 1st: FOLFIRINOX 2nd: 
GEM-E 3rd: TS-1 Chemotherapy

P43 59 F PDAC IV T4N1M1 Peritoneal 
seeding/ ascites 17.7 Yes FOLFIRINOX Chemotherapy

P46 60 M PDAC III T4N1M0 ND 17.6 No — Best supportive care only

Table 1. Summary of clinical data for the 17 pancreatic cancer patients enrolled in this study. CCRT, 
concurrent chemoradiation therapy; E, erlotinib; FU, fluorouracil; FOLFIRINOX, fluorouracil, leucovorin, 
oxaliplatin, and irinotecan; GEM, gemcitabine; mets, metastasis; ND, not detected; Op, operative procedure; P, 
cisplatin; PDAC, pancreatic adenocarcinoma; TNM, tumor/node/metastasis; TS-1, titanium silicate-1; XELOX, 
capecitabine plus oxaliplatin.
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987.15X (790.32–1476.55X), 2227.25X (490.27–5532.04X), and 1928.55X (1042.12–2843.48X), respectively 
(Supplementary Table S1).

From these data sets, we detected mutations in FNA biopsies (MFNA) and plasma samples (MP) as described 
below. Hereafter, depending on the method of detecting MP, the following notations will be used: MP/KRAS, muta-
tions detected in KRAS; MP/FNA, mutations detected in MFNA; MP/TR-BF, mutations detected in target regions in a 
biopsy-free manner; MP/TR, mutations detected in target regions combined with MP/FNA and MP/TR-BF.

KRAS mutations. First, because most PDACs carry a KRAS mutation, we determined whether these muta-
tions were present in 17 pretreatment patient samples. We detected KRAS mutations in 10 plasma (58.8%) and 13 
FNA samples (76.5%) (Fig. 1). Because the allelic fractions of somatic variants are usually notably lower in plasma 
samples than in tissue samples, the lower detection rate of KRAS mutations in plasma samples than in FNA sam-
ples was the expected result. The mean ± standard error of the mean (SEM) of KRAS mutant allele frequencies 
(MAFs) were 21.18% ± 4.06 in FNA samples and 2.02% ± 0.67 in plasma samples.

To exclude the possibility that the moderate MP/KRAS (plasma DNA mutations in KRAS) detection rate was due 
to poor analytic sensitivity of the method, we evaluated the analytic detection sensitivity and specificity of the 
targeted deep sequencing method for KRAS mutations using 62 consecutive samples from 14 patients. Based on 
droplet digital PCR (ddPCR) analysis of the samples, the targeted deep sequencing method had a 95.7% sensitiv-
ity with a 95% confidence interval (CI) of 78.1 to 99.9% and a 100% specificity with a 95% CI of 91.2 to 100% for 
detection of KRAS mutations (Supplementary Table S3 and S4), thus negating the possibility of poor sensitivity.

Therefore, evaluating only MP/KRAS may be limited by the moderate sensitivity of the method for detecting 
ctDNA, despite the majority of PDAC patients carrying KRAS mutations.

Detection of single nucleotide variants (SNVs) across broad genomic target regions. Utilizing 
customized capture-based targeted sequencing, we detected a total of 40 mutations in FNA samples (MFNA) from 
17 patients, including 2 specimens from patients P11 and P28 who had no significant mutations (Supplementary 
Table S5). In order to detect ctDNA, the 40 MFNA were statistically evaluated to determine the significance of these 
mutations in the matched pretreatment plasma DNA samples (p < 0.001). Among the 40 mutations found in 
the FNA samples, 28 were detected in the corresponding plasma samples (MP/FNA) and were significantly above 
the background noise of the plasma DNA, resulting in a 70.0% detection sensitivity with an average MAF of 
1.60% ± 0.31 (mean ± SEM) (Fig. 1a and Supplementary Table S6).

Figure 1. Detection of ctDNA in pretreatment plasma samples from 17 pancreatic cancer patients. The top 
panel summarizes the mutations detected in the 17 patients based on method (i.e., MP/KRAS, MP/FNA, and MP/TR). 
While interrogation of KRAS hotspots (MP/KRAS) detected ctDNA from 10 patients, analyses of variants detected 
from FNA samples (MP/FNA) and broad genomic target regions (MP/TR) detected tumor variants in 12 and 15 
plasma samples, respectively. The oncoprint chart presents the MFNA and MP/TR at the gene level. If a variant was 
detected in both the MFNA and MP/TR, the variant also corresponded with MP/FNA. The number of affected genes 
for each patient was plotted at the bottom of the chart. The number of samples that harbored a mutation in each 
gene is plotted on the right side of the chart. Two * and four † independent mutations in PDGFRB and ATM 
were detected in the P43 FNA and plasma samples, respectively.
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Next, we attempted to detect ctDNA by analyzing broad genomic target regions in a biopsy-free manner (MP/
TR-BF) as described in previous studies with a minor modification (Materials and Methods)9,34. This approach 
aimed to detect somatic variants without profiling tissue samples, eschewing the necessity of biopsy. From this 
analysis, we detected 27 MP/TR-BF in pretreatment plasma samples, including 15 mutations concordantly detected 
in FNA samples (Fig. 1b and Supplementary Table S6) with a median MAF of 3.54% ± 1.38. Twelve mutations 
were detected in the plasma DNA samples, but not in the matched FNA biopsy samples.

From the MP/TR-BF detected in the plasma samples either prior to treatment or peri/post-treatment, but not in 
their matched FNAs, we selected two variants (ROS1 p.I1967V and RB1 p.251X) from two patients (P2 and P5) 
and performed ddPCR to validate their presence in 8 plasma DNA samples (Supplementary Table S3). Consistent 
with the cfDNA sequencing results, these mutations were detected in consecutive plasma samples from these 
patients, indicating that variants detected only in plasma were unlikely to be false positives.

To estimate the frequency of false positives from the technical background noise, we generated sequenc-
ing data for biological replicates (n = 21) using PBL DNA from six patients. One of the replicates from each 
patient was paired with the other as a mock-matched plasma sample and was processed for variant detection as 
described in Materials and Methods. No variants were detected out of a total of 21 replicates, indicating a minimal 
false discovery rate due to technical background. Collectively, our results show that targeted deep sequencing 
of plasma DNA in biopsy-free situations is a feasible means of detecting tumor-specific somatic variants across 
target regions.

There are limitations to using FNA samples for genetic profiling as they do not sufficiently represent all 
regional subclonal events. Our data suggests that somatic profiling of mutations in plasma DNA in a biopsy-free 
manner compensates for the shortcomings of FNA samples, revealing intra-tumor heterogeneity. Based on muta-
tions in plasma DNA in target regions (MP/TR) combined with MP/FNA and MP/TR-BF, we were able to detect ctDNAs 
in 15 out of 17 pretreatment samples, suggesting there is a significant advantage to profiling broader genomic 
regions instead of KRAS hotspots.

Monitoring tumor burden by measuring ctDNA. We next examined whether ctDNA levels correlated 
with patient clinical response to therapy and disease progression. First, we measured cancer antigen 19-9 (CA 
19-9) and MP/TR in consecutive blood draws using separate draws for each type of test from ten PDAC patients 
undergoing distinct treatment protocols. Except for two patients (P11 and P27), where variants were not detected 
in either primary or plasma samples, the data from the remaining eight patients is displayed in Fig. 2. Next, we 
examined if the MP/TR frequencies and CA19-9 levels were indicative of changes in disease burden in these eight 
patients, in particular in terms of evaluation of complete response/partial response (CR/PR) and progressive 
disease (PD). MP/TR were not detected in all five cases (P5, P7, P23, P31, and P43) when PR was determined and 
were elevated in all six cases (P2, P5, P7, P36, P42, and P43) when PD was observed. Therefore, these values 
positively correlated with disease burden in all 11 patients (Supplementary Table S7). Meanwhile, CA19-9 levels 
properly signaled a positive response in two out of four cases of PR and disease progression in four out of six cases 
of PD (Supplementary Table S7). These data suggest that ctDNA detected by MP/TR is a better surrogate marker of 
patient response to chemotherapy and/or disease progression than CA19-9 in PDAC patients.

Among the eight patients, five patients (P5, P7, P23, P31, and P43) had computed tomography (CT) imaging 
data available more than three times during the tracing of the MP/TR level. For three of these patients (P23, P31, 
and P43), significant decreases in the MP/TR levels were followed by a PR evaluation (Fig. 2d,e,h). On the other 
hand, significantly detectable ctDNA levels and/or dramatic increases in the MP/TR level were followed by dis-
ease progression in P5 and P43 patients (Fig. 2b,h). On average, alterations in MP/TR frequencies were detected 
2 months ahead of the CT imaging changes observed in these patients, suggesting that ctDNA measured by 
targeted deep sequencing is the earliest indicator of disease status. Taken together, these results suggest there is 
clinical utility for cfDNA sequencing in monitoring of PDAC patient clinical responses to therapy and disease 
progression.

Next, to compare the allelic frequency of ctDNA with tumor burden, we divided our ctDNA data into four 
groups based on ctDNA at the time of 1) diagnosis (Dx) and when 2) CR/PR, 3) stable disease (SD), and 4) PD 
were noted (Fig. 3). The average allelic frequencies of ctDNA measured by all three different approaches varied 
among the groups, where the most significant was for MP/TR (analysis of variance (ANOVA), least significant 
difference (LSD), p-value = 4.5 × 10−9, Fig. 3c) followed by MP/KRAS (ANOVA, LSD, p-value = 0.0018, Fig. 3a). 
We noticed the allelic fractions of MP/TR near the time of CR/PR were significantly lower than those at the time 
of Dx, SD, and PD (Fig. 3c). Because an increase in MP/TR frequency was likely to precede determination of 
PD, we moved data points obtained less than 3 months before PD, regardless of what group they belonged to, 
into the PD group in order to take the time lag into account. When we made this adjustment, the statistical 
significance increased further, supporting this finding (ANOVA, LSD, p-value = 1.2 × 10−12, Supplementary 
Fig. S2). Meanwhile, CA 19-9 levels were not significantly different among patients with different disease statuses 
(ANOVA, LSD, p-value = 0.13, Fig. 3d).

Because the allelic frequencies in ctDNA varied according to disease status, we also quantified the aver-
age number of variants detected per sample (Fig. 4). We noticed the number of variants detected differed 
significantly among patients with different disease statuses when analyzing MP/FNA (Fig. 4a, ANOVA, LSD, 
p-value = 1.8 × 10−5) and MP/TR (Fig. 4b, ANOVA, LSD, p-value = 5.7 × 10−8). Similar to the diminished 
allelic frequencies of ctDNA in the CR/PR group, the number of MP/FNA and MP/TR had significantly decreased 
at the time of CR/PR compared to the other groups. To exclude the possibility that the low allelic frequencies 
and numbers of MP/TR in the CR/PR group were due to technical artifacts, we compared sequencing metrics 
among the groups. We found no differences in these parameters, thus ruling out the aforementioned possibility 
(Supplementary Figs S3 and S4).
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Noticeably, the allelic frequency and number of MP/TR started to decrease immediately after treatment was 
initiated and were lowest around 4 months of post-treatment (Fig. 5). Thereafter, both the allelic frequency and 
number of MP/TR significantly increased as treatment duration increased (ANOVA, LSD, p-value = 0.008 for 
Fig. 5a; ANOVA, LSD, p-value = 0.004 for Fig. 5b). These data are also consistent with our results showing that 
MP/TR correlates with evaluation of response to therapy, as PR was most frequently observed around up to 4 
months following treatment with chemotherapeutics.

Overall, our results indicate that MP/TR is a better representation of real-time disease status based on either 
allele frequency and/or number of mutations than MP/KRAS and MP/FNA. Taken together, our results strongly sug-
gest that the allelic and/or MP/TR frequencies are good indicators of real-time disease status in PDAC patients, 
providing information not only concerning the presence of disease, but also whether there is a positive response 
to therapy, even when it is a partial response.

Discussion
In this study, we evaluated ctDNA-based approaches for detecting PDAC. Specifically, we profiled (1) somatic 
variants in KRAS hotspots (MP/KRAS), (2) patient-specific mutations in tissue samples (MP/FNA), and (3) broad 
genomic target regions (MP/TR). Of these approaches, we found comprehensive analysis of ctDNA across broad 
genomic target regions was the most sensitive at detecting PDACs and accurately monitoring tumor burden. 
Furthermore, analysis of ctDNA might overcome the limitation in variant detection in FNA samples due to tumor 
purity and/or intra-tumor heterogeneity.

Among the 17 pretreatment plasma samples, we detected ctDNA in ten, twelve, and fifteen samples when 
profiling MP/KRAS, MP/FNA, and MP/TR, respectively, indicating an increased sensitivity of cancer detection by 
analyzing cfDNA across broad genomic target regions. Moreover, this improved sensitivity in ctDNA detection 
enhanced tumor monitoring by longitudinal cfDNA analysis. For instance, in patients P5 and P42, although a 

Figure 2. Monitoring of ctDNA in pancreatic cancer patients undergoing therapeutic interventions. The 
ctDNA levels estimated by MP/TR were plotted on the left y-axis for eight patients (a–h). The entire list of MP/TR is 
summarized in Supplementary Table 6. Chemotherapeutic agents administered to each patient and therapeutic 
response was evaluated based on the Response Evaluation Criteria In Solid Tumors are displayed at the top of 
the graph. CA 19-9 level (yellow solid line) and tumor size (dark-khaki dotted line) based on CT images were 
plotted against the right y-axis. CCRT, concurrent chemoradiation therapy; CR, complete response; DOD, dead 
of disease; Dx, diagnosis; E, erlotinib; GEM, gemcitabine; FU, fluorouracil; P, cisplatin; Met, metastasis; ND, not 
detected; Op, operation; PD, progressive disease; PR, partial response; SD, stable disease.
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KRAS mutation was not detected in pretreatment samples or any subsequent peri/post-treatment samples, mul-
tiple independent variants in other genes were detected whose levels consistently correlated with tumor burden 
(Fig. 2b,g). In patient P2, ROS1 p.I1967V levels in plasma DNA dramatically decreased after a surgical operation, 
which is indicative of tumor removal; however, this was not reflected in the MP/KRAS and MP/FNA (Fig. 2a).

Despite its advantages, interrogation of broader genomic regions may result in a higher frequency of false 
positives, especially when performed in a biopsy-free manner. In fact, several studies have utilized digital PCR in 
parallel with targeted deep sequencing, which can complement or cross-validate each other for detecting ctDNA 
in various types of cancers8,35,36. Furthermore, the size of the target regions queried has been taken into account 
for optimally balancing the sensitivity and specificity of detecting ctDNA in previous studies9,32. To minimize 

Figure 3. Correlation of allelic frequency of ctDNA and CA19-9 levels with patient response to therapy. The 
allelic frequencies of (a) MP/KRAS, (b) MP/FNA, and (c) MP/TR were box-plotted based on evaluations of their near-
time response to therapy and diagnosis. (d) CA 19-9 levels were box-plotted. All of the determined levels are 
presented on a logarithmic scale. In each box-plot, median and mean are indicated by a horizontal bar and red 
diamond, respectively. The level of statistical significance (ANOVA, LSD) is indicated as *P ≤ 0.05, **P ≤ 0.001, 
and ***P ≤ 0.00001. CR, complete response; Dx, diagnosis; PD, progressive disease; PR, partial response; SD, 
stable disease.

Figure 4. Number of mutations in plasma DNA. The (a) MP/FNA and (b) MP/TR in each sample were box-plotted 
according to evaluations of near-time therapy response and diagnosis. The level of statistical significance 
(ANOVA, LSD) is indicated as *P ≤ 0.05, **P ≤ 0.001, and ***P ≤ 0.00001. CR, complete response; Dx, 
diagnosis; PD, progressive disease; PR, partial response; SD, stable disease.
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these false positives, we used stringent filtering steps when calling MP/TR-BF. Then, we evaluated if the filtering 
steps during variant calling were adequate for reducing the rate of false discoveries. By analyzing duplicated 
PBL genomic DNA sequencing data, we found that false positives due to technical background were minimal, as 
described in the Results section. In addition, we validated some of the MP/TR-BF not detected in FNA specimens 
by ddPCR, which indicated using the variant detection method in a biopsy-free manner was stringent enough to 
remove most false positives.

The sensitivity of variant detection is significantly dependent on the depth of unique coverage, although this 
is not the sole determinant. Since the method to call MP/TR-BF did not use a threshold of the MAF, we calculated 
the lowest MAF of detectable MP/TR-BF, which varied depending on the depth of unique coverage (Supplementary 
Fig. S5a). In addition, we examined the allele-specific background error rates across the target regions 
(Supplementary Fig. S5b) because a practical limit of detection is also imposed by errors introduced during sam-
ple preparation and sequencing. However, due to elevated background error rates, only 1.58% of alternative alleles 
required more supporting reads than the threshold (n = 8) in the calling algorithm for MP/TR-BF (Supplementary 
Fig. S5c). These data indicated that the lowest theoretical MAF was applicable to >98% of the alternative alleles. 
We next calculated the lowest theoretical MAF of MP/TR-BF depending on the amount of input DNA, which was 
correlated with the depth of unique coverage as shown in Supplementary Fig. S6a. The average threshold for call-
ing MP/TR-BF varied in the range of 0.24–0.70% depending on the input DNA amount (7.8–102 ng, except for one 
outlier of 212 ng) used for library construction in this study.

When we sequenced cfDNA reference DNA (50 ng) from Horizon, which contains hotspot mutations at a 
frequency of 0.1%, 1%, and 5%, we were able to detect all six SNVs at the 1% frequency but none at the 0.1% fre-
quency using the MP/TR-BF calling method. The data were consistent with the estimated lowest theoretical MAF of 
MP/TR-BR. Although the number of variants tested was small and the interval of tested frequency was wide, the data 
showed that the MAF detection limit of the method was around 1% or less.

Because we applied stringent filtering steps to minimize the false discovery rate when detecting MP/TR-BF, the 
variant calling method might compromise the analytic detection sensitivity. Combining this method with MP/
FNA allowed detection at a high sensitivity by taking advantage of patient-specific mutations in tissue samples. 
Therefore, we could compensate for the compromised detection sensitivity while interrogating somatic tumor 
variants across broad genomic regions.

Molecular barcoding has recently been shown to minimize technical background noise and overcome the loss 
of unique reads due to fragment identification collision during deduplication26. However, this method was not 
utilized in this study. Therefore, modification to include molecular barcoding is anticipated to further improve the 
specificity and sensitivity of targeted deep sequencing of broad genomic regions to detect ctDNA.

As the profiles of genetic alterations in PDAC may allow physicians to determine tailored therapeutics by 
offering useful information on probable clinical outcomes, genetic testing using tumor samples is becoming 
increasingly important37. Although genetic tests for PDAC are often conducted using endoscopic ultrasound 
(EUS)-guided FNA samples38,39, FNA specimens often have low cellularity and contain a significant fraction of 
normal stromal cells24. Consequently, genetic tests using FNA samples frequently suffer from small input amounts 
of DNA that contain only a small fraction of tumor DNA, which affects the analytic detection sensitivity of these 
tests40. We also detected KRAS mutations (allele frequency ≥4%) in 76.5% of FNA specimens, which is somewhat 
lower than KRAS mutation-positive rates observed in surgical specimens. Additionally, FNA samples might not 
thoroughly represent various subclonal populations in heterogeneous tumor masses. As our results included 
tumor variants that were not detected in FNA samples, but were detected in the corresponding plasma samples, 
the limitations of using FNA samples for genetic testing may be at least partly overcome by detecting ctDNA by 
analyzing broad genomic regions.

Figure 5. Levels of ctDNA based on treatment duration. (a) Allelic frequencies and (b) numbers of mutations 
were averaged and plotted based on duration of chemotherapy.
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There are obvious hurdles for translating targeted sequencing of cfDNA into clinical tests for PDAC. First, 
the higher cost of targeted deep sequencing might outbalance the benefit of profiling genetic alterations across 
broad genomic regions at this time. However, the recent dramatic reduction in sequencing costs implies that the 
cost-effectiveness of this method is likely to increase in the near future. Second, this study is a pilot test that ana-
lyzed only a small number of cases with the heterogeneous treatments, although we revealed the advantages of 
analyzing broad genomic regions to detect ctDNA in PDAC patients. A large cohort study is required to evaluate 
the clinical utility of this method for PDACs.

In summary, our results suggest that using targeted deep sequencing of broad genomic regions to detect 
ctDNA has diagnostic advantages, even for PDACs that typically harbor a KRAS hotspot mutation.

Materials and Methods
Patient samples. The institutional review board at the Samsung Medical Center approved this present study 
(IRB number 2014-04-048-009) and all the methods were carried out in accordance with the approved guidelines. 
Written informed consent was obtained from all subjects. Newly diagnosed PDAC patients who had undergone 
EUS-guided FNA were enrolled in and underwent blood draws for cfDNA testing. The pretreatment (i.e., before 
treatment) blood draw of participants was collected at the time of diagnosis.

Plasma and PBL sample preparation. Whole blood samples were collected in Cell-Free DNA™ BCT 
tubes (Streck Inc., Omaha, NE, USA). Plasma was prepared using 3 centrifugation steps with increasing centrif-
ugal force: 840 × g for 10 min, 1040 × g for 10 min, and then 5000 × g for 10 min at room temperature. PBLs were 
collected from the initial centrifugation step. Collected plasma and PBL samples were stored at −80 °C until DNA 
extraction.

DNA sample preparation. PBL genomic DNA was isolated using a QIAamp DNA mini kit (Qiagen, Santa 
Clarita, CA, USA). Plasma DNA was obtained from 2 to 5 mL of plasma using a QIAamp Circulating Nucleic 
Acid Kit (Qiagen). An AllPrep DNA/RNA Mini Kit (Qiagen) was used to purify genomic DNA from FNA tissues. 
The concentration, purity, and fragment size of DNA were assessed as previously described33,41. In addition, the 
Horizon cfDNA reference standard set (HD780, Horizon Discovery Group plc, Cambridge, UK) was obtained 
to evaluate the performance of variant detection. SNVs in the reference materials included EGFR L858R, EGFR 
T790M, KRASG12D, NRAS Q61K, NRAS A59T, and PIK3CA E545K.

Library preparation. Purified genomic DNA was sonicated (7 min, 0.5% duty, intensity of 0.1, and 50 
cycles/burst) into 150–200 bp fragments using a Covaris S2 (Covaris Inc. Woburn, MA, USA). The FNA sample 
libraries were constructed using the SureSelect XT reagent kit, HSQ (Agilent Technologies) according to the 
manufacturer’s instructions. The PBL and plasma DNA libraries were created using a KAPA Hyper Prep Kit 
(Kapa Biosystems, Woburn, MA, USA) as described previously33,41. When constructing the sequencing libraries, 
200 ng of PBL DNA and 37.12 ng of plasma DNA were used on average. Briefly, after end repair and A-tailing 
according to the manufacturer’s protocol, we performed adaptor ligation at 4 °C overnight using a pre-indexed 
PentAdapter™ (PentaBase ApS, Denmark). After amplification using 9 PCR cycles, the library was analyzed for 
quantity and fragment size distribution and then underwent multiplexing hybrid selection to enrich for targets. 
Hybrid selection was performed using customized RNA baits that targeted ~499 kb of the human genome, includ-
ing exons from 83 cancer-related genes (Supplementary Table 1). Up to 8 purified libraries were pooled and a 
total of 750 ng of each pooled library was used for hybrid selection reactions. Target enrichment was performed 
according to the SureSelect (Agilent Technologies) bait hybridization protocol except the blocking oligonucleo-
tide was replaced with the IDT xGen blocking oligonucleotide (IDT, Santa Clara, CA, USA) as the pre-indexed 
adapter. After target enrichment, the captured DNA fragments were amplified using 13 cycles of PCR with oligo-
nucleotides P5 and P7.

Sequencing and data processing. Based on DNA concentration and average fragment size, each library was 
diluted to a concentration of 2 nM and pooled in equal volumes. The libraries were denatured using 0.2 N NaOH, 
diluted to 20 pM in hybridization buffer (Illumina, San Diego, CA, USA), and then subjected to cluster amplifi-
cation according to the manufacturer’s protocol (Illumina). Flow cells were sequenced in the 100 bp paired-end 
mode using HiSeq. 2500 v3 Sequencing-by-Synthesis Kits (Illumina) and then analyzed using RTA v.1.12.4.2 or 
later. All of the raw data were aligned to the hg19 human reference and BAM files were created using BWA-mem 
(v0.7.5)42. SAMTOOLS (v0.1.18)43, Picard (v1.93), and GATK (v3.1.1)44 were used for sorting SAM/BAM  
files, local realignment, and duplicate markings, respectively. We filtered reads to remove duplicates, discordant 
pairs, and off-target reads as previously described33.

SNV detection in FNA samples and statistical tests for the SNVs in the matched plasma. For 
FNA biopsy specimens, somatic SNVs were detected using MuTect 1.1.445 and Varscan246 with matched germline 
(i.e., PBL) samples. For Varscan2, the default parameter values were used with previously described modifica-
tions9. Somatic SNVs identified by at least one method were retained if they were present at a frequency lower 
than 0.5% in the matched PBL sample and higher than 4% in the tumor sample. Somatic SNVs found in the FNA 
samples (MFNA) were listed and tested for their presence in the paired plasma samples as described previously9 in 
our recent study34. After background alleles in each sample were adjusted based on position-specific error rates, it 
was determined if the allelic frequency of a given SNV fell within the 95th percentile of the adjusted background 
alleles. The depth of unique coverage, strand bias, and supporting read count were also considered for SNV 
detection.
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Biopsy-free SNV (MP/TR-BF) identification in plasma DNA. A method from previous studies8,9 was 
modified slightly to identify somatic SNVs in plasma samples as described in our recent study34. First, posi-
tions with a strand bias under 0.9 and total read depth over 500 were considered for analysis. All non-reference 
alleles were subjected to Phred quality filtering using a threshold Q of 30. Non-reference alleles present at a 
frequency lower than 0.5% in the matched germline DNA were subjected to the binomial test to determine if a 
non-reference allele was significantly more abundant in plasma DNA than the matched germline DNA. Multiple 
testing adjustments were made using the Bonferroni correction. Next, z-tests were performed to compare the fre-
quencies of nonreference alleles to their background allele frequency distribution in other plasma DNA samples. 
For comparison, a background allele frequency distribution was generated by selecting non-reference alleles in 
plasma DNA present at a frequency <2.5% in the paired tumor and <0.5% in the paired germline DNA with a 
sufficient total depth (≥250× in tumor tissue, ≥500× in PBL, and ≥500× in plasma). In addition, the following 
filters were applied: (1) candidate alleles with less than eight supporting reads, (2) all candidates with an allele 
frequency <20% when there were two or more candidates within any 10 bp window, and (3) candidates with a 
Bonferroni adjusted p-value higher than 10−18 from the z-test were discarded. To remove potential false positives 
due to cross-contamination among multiplexed samples, we excluded SNV candidates if they were found as 
germline single nucleotide polymorphisms (SNPs) in other samples processed in the same lane of a sequencing 
flow cell. Nonsynonymous, stop-gain, stop-loss, and splicing-disrupting variants were listed as the final positive 
calls.

Droplet digital PCR validation. Mutant and wild-type alleles in plasma samples were quantified using the 
QX200 Droplet Digital PCR System (Bio-Rad, Hercules, CA, USA). TaqMan assays for KRAS p.G12D/G12V were 
obtained from Bio-Rad (PrimePCR ddPCR Mutation Assay) and RB1 p.R251* and ROS1 p.I1967V assays were 
custom generated by TaqMan SNP Genotyping Assays (Thermo Fisher Scientific, Waltham, MA, USA). The con-
centrations of wild-type and mutant DNA (copies per µl) in each sample were calculated using the manufacturer’s 
software and the concentrations in plasma (copies per mL) were derived as described in van Ginkel, J.H et al.47.

Statistical analysis. To evaluate whether the means between multiple groups were significantly different, we 
used one-way ANOVA with LSD post-hoc analysis. For all of the tests, statistical significance was set at 5% and 
reported as two-tailed p-values. Statistical analyses were carried out using PASW Statistics for Windows version 
Release 18.0.0 (formerly SPSS, IBM Corporation, Armonk, New York).

Accession codes. Raw sequencing data were deposited in the Sequence Read Archive with accession number 
SRP097813.
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