25 research outputs found

    Effects of direct renin blockade on renal & systemic hemodynamics and on raas activity, in weight excess and hypertension: A randomized clinical trial

    Get PDF
    Aim: The combination of weight excess and hypertension significantly contributes to cardiovascular risk and progressive kidney damage. An unfavorable renal hemodynamic profile is thought to contribute to this increased risk and may be ameliorated by direct renin inhibition (DRI). The aim of this trial was to assess the effect of DRI on renal and systemic hemodynamics and on RAAS activity, in men with weight excess and hypertension. Methods: A randomized, double-blind, cross-over clinical trial to determine the effect of DRI (aliskiren 300 mg/day), with angiotensin converting enzyme inhibition (ACEi; ramipril 10 mg/day) as a positive control, on renal and systemic hemodynamics, and on RAAS activity (n = 15). Results: Mean (SEM) Glomerular filtration rate (101 (5) mL/min/1.73m2) remained unaffected by DRI or ACEi. Effective renal plasma flow (ERPF; 301 (14) mL/min/1.73m2) was increased in response to DRI (320 (14) mL/min/1.73m2, P = 0.012) and ACEi (317 (15) mL/min/1.73m2, P = 0.045). Filtration fraction (FF; 34 (0.8)%) was reduced by DRI only (32 (0.7)%, P = 0.044). Mean arterial pressure (109 (2) mmHg) was reduced by DRI (101 (2) mmHg, P = 0.008) and ACEi (103 (3) mmHg, P = 0.037). RAAS activity was reduced by DRI and ACEi. Albuminuria (20 [9±42] mg/d) was reduced by DRI only (12 [5±28] mg/d, P = 0.030). Conclusions: In men with weight excess and hypertension, DRI and ACEi improved renal and systemic hemodynamics. Both DRI and ACEi reduced RAAS activity. Thus, DRI provides effective treatment in weight excess and hypertension

    Spatial and temporal modulation of cell instructive cues in a filamentous supramolecular biomaterial

    Get PDF
    Supramolecular materials provide unique opportunities to mimic both the structure and mechanics of the biopolymer networks that compose the extracellular matrix. However, strategies to modify their filamentous structures in space and time in 3D cell culture to study cell behavior as encountered in development and disease are lacking. We herein disclose a multicomponent squaramide-based supramolecular material whose mechanics and bioactivity can be controlled by light through co-assembly of a 1,2-dithiolane (DT) monomer that forms disulfide cross-links. Remarkably, increases in storage modulus from ∼200 Pa to >10 kPa after stepwise photo-cross-linking can be realized without an initiator while retaining colorlessness and clarity. Moreover, viscoelasticity and plasticity of the supramolecular networks decrease upon photo-irradiation, reducing cellular protrusion formation and motility when performed at the onset of cell culture. When applied during 3D cell culture, force-mediated manipulation is impeded and cells move primarily along earlier formed channels in the materials. Additionally, we show photopatterning of peptide cues in 3D using either a photomask or direct laser writing. We demonstrate that these squaramide-based filamentous materials can be applied to the development of synthetic and biomimetic 3D in vitro cell and disease models, where their secondary cross-linking enables mechanical heterogeneity and shaping at multiple length scales.Toxicolog

    Adult-onset autoinflammation caused by somatic mutations in UBA1:A Dutch case series of patients with VEXAS

    Get PDF
    Background: A novel autoinflammatory syndrome was recently described in male patients who harbored somatic mutations in the X-chromosomal UBA1 gene. These patients were characterized by adult-onset, treatment-refractory inflammation with fever, cytopenia, dysplastic bone marrow, vacuoles in myeloid and erythroid progenitor cells, cutaneous and pulmonary inflammation, chondritis, and vasculitis, which is abbreviated as VEXAS. Objective: This study aimed to (retrospectively) diagnose VEXAS in patients who had previously been registered as having unclassified autoinflammation. We furthermore aimed to describe clinical experiences with this multifaceted, complex disease. Methods: A systematic reanalysis of whole-exome sequencing data from a cohort of undiagnosed patients with autoinflammation from academic hospitals in The Netherlands was performed. When no sequencing data were available, targeted Sanger sequencing was applied in cases with high clinical suspicion of VEXAS. Results: A total of 12 male patients who carried mutations in UBA1 were identified. These patients presented with adult-onset (mean age 67 years, range 47-79 years) autoinflammation with systemic symptoms, elevated inflammatory parameters, and multiorgan involvement, most typically involving the skin and bone marrow. Novel features of VEXAS included interstitial nephritis, cardiac involvement, stroke, and intestinal perforation related to treatment with tocilizumab. Although many types of treatment were initiated, most patients became treatment-refractory, with a high mortality rate of 50%. Conclusion: VEXAS should be considered in the differential diagnosis of males with adult-onset autoinflammation characterized by systemic symptoms and multiorgan involvement. Early diagnosis can prevent unnecessary diagnostic procedures and provide better prognostic information and more suitable treatment options, including stem cell transplantation

    Urinary plasmin inhibits TRPV5 in nephrotic-range proteinuria

    No full text
    Contains fulltext : 110115.pdf (publisher's version ) (Closed access)Urinary proteins that leak through the abnormal glomerulus in nephrotic syndrome may affect tubular transport by interacting with membrane transporters on the luminal side of tubular epithelial cells. Patients with nephrotic syndrome can develop nephrocalcinosis, which animal models suggest may develop from impaired transcellular Ca(2+) reabsorption via TRPV5 in the distal convoluted tubule (DCT). In nephrotic-range proteinuria, filtered plasminogen reaches the luminal side of DCT, where it is cleaved into active plasmin by urokinase. In this study, we found that plasmin purified from the urine of patients with nephrotic-range proteinuria inhibits Ca(2+) uptake in TRPV5-expressing human embryonic kidney 293 cells through the activation of protease-activated receptor-1 (PAR-1). Preincubation with a plasmin inhibitor, a PAR-1 antagonist, or a protein kinase C (PKC) inhibitor abolished the effect of plasmin on TRPV5. In addition, ablation of the PKC phosphorylation site S144 rendered TRPV5 resistant to the action of plasmin. Patch-clamp experiments showed that a decreased TRPV5 pore size and a reduced open probability accompany the plasmin-mediated reduction in Ca(2+) uptake. Furthermore, high-resolution nuclear magnetic resonance spectroscopy demonstrated specific interactions between calmodulin and residues 133-154 of the N-terminus of TRPV5 for both wild-type and phosphorylated (S144pS) peptides. In summary, PAR-1 activation by plasmin induces PKC-mediated phosphorylation of TRPV5, thereby altering calmodulin-TRPV5 binding, resulting in decreased channel activity. These results indicate that urinary plasmin could contribute to the downstream effects of proteinuria on the tubulointerstitium by negatively modulating TRPV5

    Single-crystal copper films on sapphire

    No full text
    Single-crystal copper films on sapphire have recently been reported upon in relation to graphene growth on these films. In the present paper the kinetics of the formation of single crystal copper films is investigated. We demonstrate the importance of heating the sapphire substrate in 1000 hPa oxygen, followed by a fast cooling prior to depositing the copper film. The importance of this treatment is tentatively explained by the dissolution of oxygen in sapphire and subsequent out-diffusion during recrystallization of the copper film to form a copper-oxide interface layer. Also, the importance of avoiding oxygen incorporation in the sputter deposited film is demonstrated.Micro and Nano Engineering(OLD) MSE-1ImPhys/Computational ImagingImPhys/Imaging Physics(OLD) MSE-

    Fibroblast growth factor 23 and the antiproteinuric response to dietary sodium restriction during renin-angiotensin-aldosterone system blockade.

    No full text
    BACKGROUND: Residual proteinuria during renin-angiotensin-aldosterone system (RAAS) blockade is a major renal and cardiovascular risk factor in chronic kidney disease. Dietary sodium restriction potentiates the antiproteinuric effect of RAAS blockade, but residual proteinuria remains in many patients. Previous studies linked high fibroblast growth factor 23 (FGF-23) levels with volume overload; others linked higher serum phosphate levels with impaired RAAS-blockade efficacy. We hypothesized that FGF-23 reduces the capacity of dietary sodium restriction to potentiate RAAS blockade, impairing the antiproteinuric effect. STUDY DESIGN: Post hoc analysis of cohort data from a randomized crossover trial with two 6-week study periods comparing proteinuria after a regular-sodium diet with proteinuria after a low-sodium diet, both during background angiotensin-converting enzyme inhibition. SETTING & PARTICIPANTS: 47 nondiabetic patients with CKD with residual proteinuria (median protein excretion, 1.9 [IQR, 0.8-3.1] g/d; mean age, 50+/-13 [SD] years; creatinine clearance, 69 [IQR, 50-110] mL/min). PREDICTOR: Plasma carboxy-terminal FGF-23 levels. OUTCOMES: Difference in residual proteinuria at the end of the regular-sodium versus low-sodium study period. Residual proteinuria during the low-sodium diet period adjusted for proteinuria during the regular-sodium diet period. RESULTS: Higher baseline FGF-23 level was associated with reduced antiproteinuric response to dietary sodium restriction (standardized beta=-0.46; P=0.001; model R(2)=0.71). For every 100-RU/mL increase in FGF-23 level, the antiproteinuric response to dietary sodium restriction was reduced by 10.6%. Higher baseline FGF-23 level was a determinant of more residual proteinuria during the low-sodium diet (standardized beta=0.27; P=0.003) in linear regression analysis adjusted for baseline proteinuria (model R(2)=0.71). There was no interaction with creatinine clearance (P interaction=0.5). Baseline FGF-23 level did not predict changes in systolic or diastolic blood pressure upon intensified antiproteinuric treatment. LIMITATIONS: Observational study, limited sample size. CONCLUSIONS: FGF-23 levels are associated independently with impaired antiproteinuric response to sodium restriction in addition to RAAS blockade. Future studies should address whether FGF-23-lowering strategies may further optimize proteinuria reduction by RAAS blockade combined with dietary sodium restriction
    corecore