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Abstract

Aim

The combination of weight excess and hypertension significantly contributes to cardiovascu-

lar risk and progressive kidney damage. An unfavorable renal hemodynamic profile is thought

to contribute to this increased risk and may be ameliorated by direct renin inhibition (DRI).

The aim of this trial was to assess the effect of DRI on renal and systemic hemodynamics

and on RAAS activity, in men with weight excess and hypertension.

Methods

A randomized, double-blind, cross-over clinical trial to determine the effect of DRI (aliskiren

300 mg/day), with angiotensin converting enzyme inhibition (ACEi; ramipril 10 mg/day) as a

positive control, on renal and systemic hemodynamics, and on RAAS activity (n = 15).

Results

Mean (SEM) Glomerular filtration rate (101 (5) mL/min/1.73m2) remained unaffected by DRI or

ACEi. Effective renal plasma flow (ERPF; 301 (14) mL/min/1.73m2) was increased in response

to DRI (320 (14) mL/min/1.73m2, P = 0.012) and ACEi (317 (15) mL/min/1.73m2, P = 0.045).

Filtration fraction (FF; 34 (0.8)%) was reduced by DRI only (32 (0.7)%, P = 0.044). Mean arte-

rial pressure (109 (2) mmHg) was reduced by DRI (101 (2) mmHg, P = 0.008) and ACEi (103

(3) mmHg, P = 0.037). RAAS activity was reduced by DRI and ACEi. Albuminuria (20 [9–42]

mg/d) was reduced by DRI only (12 [5–28] mg/d, P = 0.030).
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Conclusions

In men with weight excess and hypertension, DRI and ACEi improved renal and systemic

hemodynamics. Both DRI and ACEi reduced RAAS activity. Thus, DRI provides effective

treatment in weight excess and hypertension.

Trial Registration

Dutch trial register, registration number: 2532 www.trialregister.nl

Introduction

The prevalence of weight excess has been steadily rising over the past decades and shows no

sign of abating yet, thereby becoming a major global health problem of the 21st Century [1,2].

The association between weight excess and hypertension is widely recognized, and linked to

an increased risk for long-term cardiovascular and renal damage [3–7]. The increased renal

risk associated with weight excess and hypertension is only partly explained by the elevated

blood pressure as such, and additional factors such as insulin resistance and an unfavorable

renal hemodynamic profile have been implicated [8–11].

Weight excess is associated with distinct renal hemodynamic abnormalities, that are promi-

nent in subjects with overt obesity, but already apparent in the overweight range, with an ele-

vated filtration fraction (FF) as a common denominator [12]. The latter may reflect glomerular

hypertension that contributes to long-term renal damage, as shown in animal experiments

[13]. We previously reported on the consistent association between higher body mass index

(BMI) and higher FF, and moreover, showed that higher FF is independently associated with

worse long-term outcome in renal transplant recipients, supporting a role of higher FF as a

renal risk factor in humans [14].

Blockade of the renin-angiotensin-aldosterone system (RAAS) reduces blood pressure and

exerts specific renal hemodynamics effects, with a reduction in FF, and provides long-term

renoprotection in patients with renal disease [15,16]. Accordingly, the renal hemodynamic

actions of RAAS blockade may be of benefit especially in subjects with weight excess and

hypertension. In line, ACEi exerts beneficial effects on renal hemodynamics in overweight and

obesity [17]. There is data to suggest that DRI might be particularly effective in modulating

renal RAAS [18]. However, the effect of DRI on renal hemodynamics and RAAS activity has

not been tested so far in subjects with weight excess and hypertension. We therefore assessed

the effect of DRI in maximal dose, with maximal dose ACEi as a positive control, on renal

hemodynamics, twenty-four hour ambulant blood pressure, and on RAAS activity parameters

in men with weight excess and hypertension.

Material and Methods

General trial information

This randomized, double-blind, cross-over clinical trial was performed between January 2011

and June 2012 at the Department of Medicine, Division of Nephrology, of the University Med-

ical Center Groningen (UMCG), Groningen, The Netherlands (Trial protocol in S1 Text). Pri-

mary outcome measure of the trial were renal hemodynamics (glomerular filtration rate: GFR,

effective renal plasma flow: ERPF, and filtration fraction: FF) and systemic blood pressure (sys-

tolic blood pressure: SBP, diastolic blood pressure: DBP, and mean arterial pressure: MAP) as
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measured by twenty-four hour ambulatory blood pressure measurement (ABPM). Secondary

outcome measures of the trial were RAAS activity (renin concentration and activity, aldoste-

rone concentration, aldosterone/renin concentration ratio, and angiotensinogen concentra-

tion) and volume status (extracellular fluid volume: ECV). The trial was conducted according

to the ethical principles of the Declaration of Helsinki and Good Clinical Practice (GCP), and

was approved by the Independent Medical Ethics Committee of our University Medical Center

(METc-number: 2010/228). The trial is registered at the Dutch trial register (www.trialregister.

nl; trial registration number: 2532). All participants provided written informed consent.

Trial participants

We screened consecutive Caucasian men with weight excess and essential hypertension from

our outpatient clinic for nephrology and hypertension, and from two local general practitioner

clinics. Inclusion criteria were a BMI between >27 and�35 Kg/m2, essential hypertension

(WHO criteria; either treated with antihypertensive medication or untreated ambulant systolic

and/or diastolic blood pressure�140 and/or�90 mmHg, respectively [19]), normal renal func-

tion (endogenous creatinine clearance�90 mL/min/1.73m2), and normo- or microalbuminuria

(urinary albuminuria excretion<300 mg/day). For safety reasons we excluded subjects with

off-treatment systolic and diastolic blood pressure of�180 and�110 mmHg, respectively, and

subjects with a history of cardiovascular disease (myocardial infarction, angina pectoris, percu-

tanous transluminal coronary angioplasty, coronary artery bypass grafting, stroke, heart failure

(stage I-IV of the New York Heart Association classification). Other main exclusion criteria

were: diabetes mellitus, active malignancy, any medication and/or surgical or medical condition

that might alter absorption, distribution, metabolism, or excretion of medication, history of

hypersensitivity or contraindication to trial medication or radio-labeled tracers, history of

angioedema, autonomic dysfunction, participation in any other clinical investigation within

three months prior to start of the trial, blood or plasma donation within 3 months prior to initial

dosing, and history of either drugs or alcohol abuse.

Trial protocol

Subjects that were treated with antihypertensive medication prior to start of the trial were first

enrolled in a 6-week wash-out period in which prior antihypertensive medication was stopped.

NSAIDs were not allowed and discontinued at start of the wash-out period (n = 2). Other non-

trial drugs were kept stable during the trial. Consecutively, subjects were randomly assigned

(1:1) to either a 6-week treatment period with angiotensin converting enzyme-inhibition (ACEi;

ramipril 10 mg/day) and aliskiren-placebo or direct renin-blockade (DRI; aliskiren 300 mg/day)

and ramipril-placebo, according to the double-dummy principle, in a cross-over fashion. An

independent pharmacist randomized treatment sequences using a computer. The randomization

code remained secret during the entire study and all patients, investigators, and health care pro-

viders were blinded, except for the pharmacist. Dose of DRI and ACEi were chosen on basis of

their maximal recommended dose according to European Medicines Agency (www.ema.europa.

eu). After completion of the first treatment period, subjects enrolled in an 8-week wash-out

period after which the second treatment period started.

Subjects visited our outpatient clinic for nephrology and hypertension at baseline, and after

completion of the wash-out period and the 2 treatment periods for clinical assessment (body

weight, and adverse events), measurement of renal hemodynamics (GFR, ERPF, and FF),

monitoring of 24-hour ambulant and office blood pressure (SBP, DBP, and MAP), volume sta-

tus (ECV), and for blood and 24-hour urine sampling for measurement of RAAS parameters

(renin concentration and activity, aldosterone concentration, aldosterone/renin concentration
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ratio, and angiotensinogen concentration), and routine hematology and biochemistry variables.

Subjects were instructed to take trial medication once daily, in the morning, except when renal

hemodynamic measurements were performed. Furthermore, subjects were instructed to adhere

to a regular protein and sodium diet (being 1.1 g/Kg body weight/day and 200 mmol/day,

respectively). No structured follow-up of subjects after trial completion was performed.

Trial measurements and calculations

Renal hemodynamics. Constant infusion of radio-labeled tracers, 125I-iothalamate, and
131I-hippurate, was used to measure GFR and ERPF, respectively, with subjects being in a

quiet room, in a semi-supine position. After drawing a blank blood sample, a priming solution

containing 0.04 mL/Kg body weight of the infusion solution (0.04 MBq of 125I-iothalamate

and 0.03 MBq of 131I-hippurate) plus an extra bolus of 0.06 MBq of 125I-iothalamate was given

at 08:00 hours, followed by infusion at a rate of 12 mL/hour. In order to attain stable plasma

concentrations of both tracers, a 2-hour stabilization period followed, after which baseline

measurement started at 10:00 hours. The clearances were calculated as (U×V)/P and (I×V)/P,

respectively. U×V represents the urinary excretion of the tracer, I×V represents the infusion

rate of the tracer, and P represents the tracer value in plasma at the end of each clearance

period. This method corrects for incomplete bladder emptying and dead space, by multiplying

urinary clearance of 125I-iothalamate with the ratio of the plasma and urinary clearance of 131I-

hippurate [20,21]. FF was calculated by dividing GFR by ERPF, and expressed as percentage.

Renal vascular resistance (RVR) was calculated as the ratio of MAP (calculated with blood

pressures measured during renal hemodynamic measurements as described further on), and

renal blood flow, the latter being ERPF multiplied by 1 minus hematocrit. ECV was calculated

using the distribution volume of 125I-iothalamate, as described previously [22].

To comply with common practice in literature, we indexed renal hemodynamic parame-

ters, except FF, for body surface area (BSA). However, as this can induce bias when analyzing

renal hemodynamics in overweight and obese subjects, we additionally repeated analyses for

crude (mL/min) values of GFR, ERPF and RVR.

Systemic hemodynamics. Twenty-four hour ambulant blood pressure measurements

(Spacelabs Medical1, Inc. Issaquah, WA, USA) were performed one day prior to the measure-

ment of renal hemodynamics. At baseline, blood pressure was measured at both arms to check

for presence of a clinical significant difference in blood pressure (present in none of the sub-

jects). We measured upper-arm circumference at baseline to custom-fit cuff size, and subjects

were instructed to place their arm in a resting position during blood pressure measurement.

Blood pressure cuffs were applied by either a trained technician or by A.J.K. Blood pressure

was measured every 30 minutes during both day- and night time. A measurement was noted

as unsuccessful when number of recordings was less than 80% (1 patient at end of the DRI

treatment period).

In addition, blood pressure was measured after completion of the 2-hour stabilization period

during renal hemodynamic measurement, at 1-minute intervals by an semi-automatic device

(Dinamap1, G.E. Medical Systems, Milwaukee, WI, USA), with subjects being in a quiet room,

in a semi-supine position, and in a fasting condition. We used the mean of the single last 4 read-

ings (last reading was omitted as subjects may react to the nurses entering the room). We

expressed blood pressure as systolic, diastolic and mean arterial pressure, the last being calcu-

lated as diastolic pressure plus one third of pulse pressure.

RAAS parameters. Fasting blood samples were obtained at start of renal hemodynamic

measurement, after a minimum semi-supine rest of 15 minutes. Twenty-four hour urine was

collected at the day prior to the hospital visit. Blood samples for measurement of RAAS activity
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parameters were immediately put on ice, centrifuged at 3000 RPM for 10 min at 4˚C, and sub-

sequently frozen on liquid nitrogen and stored at −80˚C until analysis. Plasma renin activity

was measured by determining angiotensin I generation at 37˚C in the presence of angiotensi-

nase inhibitors. Detection limit of this assay was 0.03 pmol angiotensin I /mL/hr, and the coef-

ficient of variance (CV) was 11%. Plasma and urinary renin concentration were measured

with an immunoradiometric assay (Renin III; Cisbio, Gif-sur-Yvette, France), with a detection

limit of 1 pg/mL, and a coefficient of variance (CV) of 7%. Plasma and urinary aldosterone

were measured with a radioimmunoassay (Coat-a-Count, Diagnostics Product Corporation,

Siemens, LA, CA, USA). This assay has a detection limit of 11 pg/mL, and a CV of 8%. Plasma

angiotensinogen was measured as the maximum quantity of angiotensin I that was generated

during incubation with excess recombinant renin. The detection limit of this assay was 0.50

pmol/mL, and the CV was 10%. We expressed plasma angiotensinogen as pg/mL (multiplying

by its molecular weight of 65 kDa). Urinary angiotensinogen was measured with a commercial

angiotensinogen ELISA (IBL International, Hamburg, Germany), with a detection limit of

0.01 ng/mL, and a CV of 5%. Urinary measurements of RAAS parameters were performed in

24-hour urine samples and expressed as excretion rates per 24-hour. Aldosterone/renin con-

centration ratio was calculated by dividing aldosterone concentration by renin concentration.

Urine/plasma concentration ratios of renin, aldosterone and angiotensinogen were calculated

by dividing urinary concentration by plasma concentration, and were multiplied by 100%.

Other measurements and calculations. Routine hematology and biochemistry variables

were measured within 2 hours after blood and urine sampling. Proteinuria and albuminuria

were measured with a turbidimetric assay using benzethonium chloride (Modular, Roche

Diagnostics, Mannheim, Germany). Values of urinary protein concentration were below

detection limit (0.1 g/L) in 4, 3 and 4 subjects at baseline, DRI, and ACEi, respectively, and was

set at 0.05 g/L in order to calculate urinary excretion rate. Urinary albuminuria concentration

was below detection limit (1 mg/L) in one subject during ACEi, and was set at 0.5 mg/L. Blood

electrolytes, lipids, glucose, and urinary electrolytes were measured using an automated multi-

analyser (Modular, Roche Diagnostics, Mannheim, Germany). Creatinine clearance was calcu-

lated from creatinine concentration in plasma and 24-hour urine sample. Body mass index

(BMI), as a measure of overall obesity, was calculated by dividing body weight by height

squared (kg/m2). Obesity was defined as BMI > 30 kg/m2. Body surface area (BSA) was calcu-

lated according to the DuBois-DuBois formula [23]. Waist and hip circumference were mea-

sured on bare skin, at the natural indentation between the 10th rib and iliac crest and at the

region of the trochanter major, respectively. Waist circumference was measured after an over-

night fast and at end of normal expiration to avoid influence of stomach content and respira-

tion phase on measurements. Waist-to-hip ratio (WHR) was calculated as waist circumference

divided by hip circumference.

Statistical analysis

We expected subjects to present with a mean unindexed ERPF of 444 mL/min at baseline. As

ample size calculation (two-sided T-test) was performed on basis of a hypothesized increase in

ERPF of 47 mL/min with DRI and 29 mL/min with ACEi [15,24], with a standard deviation in

ERPF response of 17 mL/min. In order to give the trial 90% power to detect a statistically sig-

nificant increase in ERPF during both ACEi and DRI (α = 0.05) we calculated that a total of

fourteen subjects had to complete the cross-over design sequence. We aimed to randomize 16

subjects at start of the trial to anticipate on a dropout rate of 10%.

Analyses were performed after database was locked. Paired T-tests were used to determine

treatment response. Non-normally distributed variables were log10-transformed before analysis.
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In addition, we analysed data by linear mixed model analysis, including a Bonferroni correc-

tion, with renal and systemic hemodynamics and RAAS-parameters as dependent variables,

subjects as a random factor, and treatment (ACEi or DRI) and sequence (start with either ACEi

or DRI) as well as their interaction (treatment x sequence) as fixed factors, to account for

repeated measurements and tot check for presence of any potential carry-over effects of treat-

ment. As this analysis did not essentially change results we only present paied T-tests. Renal

hemodynamic and blood pressure measurements were essential similar for baseline and wash-

out period, and therefore only baseline data are shown. Data are given as mean with standard

error of mean (SEM) when normally distributed, and otherwise as geometric mean with 95%

confidence interval (95% CI). Data was analyzed using SPSS version 20.0 (SPSS Inc., Chicago,

IL) and GraphPad Prism version 5 (GraphPad Software Inc., San Diego, CA). Statistical signifi-

cance was assumed at the 5% level of probability.

Results

Trial population

We invited 64 overweight/obese hypertensive male subjects for an information visit at the out-

patient clinic of which 17 subjects responded and were subsequently found eligible for partici-

pation. During the run-in period, 1 patient was excluded because of asymptomatic subclinical

hypothyroidism with high anti-thyroid peroxidase auto-antibodies for which thyroid hormone

substitution was indicated. The remaining 16 subjects were randomized. After baseline mea-

surement, 1 subject refused further participation due to lack of motivation and was therefore

excluded. A total of 15 subjects completed the trial and were included in analyses (Fig 1).

Subject characteristics are shown in Table 1. By default, subjects were hypertensive and

overtly overweight, with 47% being obese (defined as BMI > 30 Kg/m2). Fasting plasma glu-

cose, HbA1C, and cholesterol levels were all within normal limits. Before trial enrollment, 10

(67%) subjects used 1 [0–2] antihypertensive medication, being either ACEi (n = 7), ARB

(n = 3), diuretics (n = 7), or calcium channel blockers (n = 1). No statistical differences in sub-

ject characteristics were noted when stratified for treatment of initiation (S1 Table). Compli-

ance to ACEi and DRI capsules during both trial periods, as assessed by pill counts, was > 85%

in all but one subject that had a compliance of 76% during the ACEi treatment.

Renal hemodynamics

BSA-indexed renal hemodynamic parameters at baseline and after six week treatment with

DRI and ACEi are shown in Fig 2. Mean (SEM) GFR/BSA at baseline was 101 (5) mL/min/

1.73m2 and remained essentially unaffected by DRI (102 (5) mL/min/1.73m2, P = 0.9) and by

ACEi (104 (4) mL/min/1.73m2, P = 0.1). ERPF/BSA was significantly increased in response to

DRI (320 (14) mL/min/1.73m2, P = 0.012) and ACEi (317 (15) mL/min/1.73m2, P = 0.045)

compared to baseline (301 (14) mL/min/1.73m2). Both DRI (0.45 (0.03), P = 0.004) and ACEi

(0.47 (0.03), P = 0.024) reduced RVR/BSA compared to baseline (0.53 (0.05)), although FF was

only significant reduced in response to DRI treatment (DRI: 32 (0.7)%, P = 0.044 and ACEi:

33 (0.7)%, P = 0.4, respectively) compared to baseline (34 (0.8)%). Essentially similar results

were found when we repeated analyses with crude GFR, ERPF and RVR (Table 2; see S1 Table

for data stratified by treatment of initiation). Although there was a tendency of stronger effects

on renal hemodynamics with DRI, the difference in response of ERPF, RVR and FF between

DRI and ACEi was not significant. Furthermore, linear mixed model analysis did not essen-

tially change results.
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Systemic hemodynamics

Fig 3 shows data on twenty-four hour ambulant blood pressure measurements at baseline and

after six week treatment with DRI and ACEi. Mean (SEM) baseline systolic blood pressure

(147 (3) mmHg) was significantly reduced in response to DRI (137 (4) mmHg, P = 0.027) and

nominally reduced in response to ACEi (140 (4) mmHg, P = 0.1). Baseline diastolic blood

pressure (91 (2) mmHg) was significantly reduced by both DRI (83 (2) mmHg, P = 0.004) and

ACEi (85 (2) mmHg, P = 0.019). Consequently, both DRI (101 (2) mmHg, P = 0.008) and

ACEi (103 (3) mmHg, P = 0.037) reduced MAP compared to baseline (109 (2) mmHg). Results

obtained by twenty-four hour ambulant blood pressure measurements were confirmed by

office blood pressure measurement at time of renal hemodynamic measurements using a semi

automatic device (Table 2). There was no significant difference in blood pressures response

between DRI and ACEi. Essential similar results were found with linear mixed model analysis.

RAAS activity

Fig 4 shows data on RAAS parameters at baseline and after six week treatment with DRI and

ACEi. All subjects had a pronounced rise and reduction in plasma renin concentration and

aldosterone/renin ratio, respectively, confirming good compliance to trial medication. Geo-

metric mean (95% CI) of plasma renin activity at baseline (0.9 [0.6–1.3] pmol Ang I /mL/hr)

Fig 1. Flow chart of inclusion.

doi:10.1371/journal.pone.0169258.g001
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was significantly reduced in response to DRI (0.2 [0.1–0.3] pmol Ang I /mL/hr, P<0.001),

and significantly increased in response to ACEi (2.1 [1.4–3.1] pmol Ang I /mL/hr, P<0.001).

Plasma renin concentration and urinary renin excretion at baseline (7.0 [4.7–10.4] pg/mL and

3.4 [2.3–5.0 ng/day], resp.) were significantly increased by DRI (35.4 [20.3–61.9] pg/mL and

7.5 [4.8–11.9] ng/day, resp.; both P<0.001 vs. baseline) and to a lesser extent by ACEi (19.2

[12.0–30.7] pg/mL and 4.8 [3.2–7.1] ng/day, resp.; both P<0.001 vs. baseline). Urinary excre-

tion of aldosterone at baseline (5672 [5672–10290] ng/day) was significantly reduced by DRI

(4969 [3475–7106] ng/day, P = 0.014) and ACEi (4987 [3084–8062] ng/day, P = 0.036), with-

out affecting plasma aldosterone levels (98 [73–130] pg/mL, 95 [64–142] pg/mL, and 122 [84–

176] pg/mL for baseline, DRI and ACEi, resp.; P>0.05 for both DRI and ACEi). Consequently,

aldosterone/renin concentration ratio in both plasma and urine at baseline (14.0 [8.9–22.0] and

2248 [1444–3499], resp.) were significantly reduced by DRI (2.7 [1.6–4.5], P<0.001) and 660

[339–1288], P = 0.012) and to a lesser extent by ACEi (6.4 [4.0–10.2], P<0.001 and 1046 [533–

2054], resp. P<0.001). Plasma angiotensinogen at baseline (97295 [86438–109515] ng/mL)

was not affected by DRI (91688 [75576–111235] ng/mL, P = 0.6), but significantly reduced by

ACEi (86488 [77523–96490] ng/mL, P = 0.023). In contrast, urinary angiotensinogen at base-

line (4067 [1448–11425] ng/day) was significantly reduced by DRI (1325 [531–3304] ng/day,

P = 0.009) and not by ACEi (2378 [907–6237] ng/day, P = 0.1). Data on urine/plasma concen-

tration ratios of renin, aldosterone and angiotensinogen are shown in Fig 5. The urine/plasma

concentration ratio of renin and angiotensinogen at baseline (24 [12–47]% and 0.0020 [0.0008–

0.0051]%, resp.) were significantly reduced in response to DRI (10 [4–27]%, P = 0.023 and

0.0007 [0.0003–0.0017]%, P = 0.009, resp.). The urine/plasma concentration ratio of aldosterone

was neither affected by DRI nor by ACEi. DRI had overall a stronger effect on RAAS activity

parameters, which reached statistical significance for plasma and urinary renin concentration

(P = 0.009 and P = 0.001 compared to ACEi, resp.) and plasma and urinary aldosterone/renin

concentration ratio (P = 0.001 and P = 0.002 compared to ACEi, resp.).

Table 1. Subject characteristics (n = 15).

Age (years) 58 (3)

Male gender, n (%) 15 (100%)

BMI (Kg/m2) 30 (1)

Obesity, n (%) 7 (47%)

Office SBP (mmHg) 149 (5)

Office DBP (mmHg) 93 (3)

AHM prior to inclusion, n [range] 1 [0–2]

Waist circumference (cm) 108 (2)

Hip circumference (cm) 103 (2)

WHR 1.06 (0.02)

HbA1C (%) 5.8 (0.16)

Fasting plasma glucose (mmol/L) 5.9 (0.3)

Total cholesterol (mmol/L) 4.9 (0.2)

LDL cholesterol (mmol/L) 3.2 (0.2)

HDL cholesterol (mmol/L) 1.2 (0.1)

Data are shown as mean (SEM) or as geometric mean (95% CI) when indicated. Office blood pressure was

measured with semi automatic blood pressure device (Dinamap®).

Abbreviations: BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; AHM:

antihypertensive medication; WHR: waist-to-hip ratio; LDL: low density lipoprotein; HDL: high density

lipoprotein.

doi:10.1371/journal.pone.0169258.t001

Effects of Direct Renin Blockade in Weight Excess and Hypertension: A Randomized Clinical Trial

PLOS ONE | DOI:10.1371/journal.pone.0169258 January 24, 2017 8 / 18



Additional biochemical parameters and side effects

Table 3 shows data on albuminuria, volume status, and plasma and urine measurements at

baseline and after treatment with DRI and ACEi. Urinary albumin excretion rate was in the

normal range at baseline (20 [9–42] mg/day) and showed a significant reduction by DRI (12

Fig 2. Renal hemodynamic parameters at baseline and after 6-week treatment with ACEi and DRI. Renal hemodynamic data

indexed for BSA. Data shown as mean (SEM). Abbreviations: BSA: body surface area; GFR: glomerular filtration rate; ERPF: effective

renal plasma flow; FF: filtration fraction.

doi:10.1371/journal.pone.0169258.g002
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[5–28] mg/day, P = 0.030), however not by ACEi (16 [7–35] mg/day, P = 0.3). Urinary protein

excretion rate was in the low-normal range at baseline (0.1 [0.1–0.1] g/day), however, unre-

sponsive to either DRI or ACEi.

Mean urinary sodium excretion at baseline was 205 (21) mmol/day and remained stable

throughout the trial. In line with this, ECV, body weight, and urinary volume remained also

unaffected by either DRI or ACEi. Serum potassium at baseline (3.9 (0.1) mmol/L) showed a

small but significant increase by DRI (4.0 (0.1) mmol/L, P = 0.043), but not by ACEi (4.0 (0.1)

mmol/L, P = 0.5). None of the subjects developed hyperkalemia (defined as K+>5.0 mmol/L).

Urinary potassium excretion remained stable throughout the trial.

One patient complained of dry cough and symptomatic hypotension during treatment with

DRI, which did not result in dosage reduction of trial medication and was resolved after com-

pletion of the trial period.

Table 2. Renal hemodynamics and systemic blood pressure measurements at baseline and after

treatment with ACEi and DRI.

Baseline ACEi DRI

Crude renal hemodynamic data

GFR (mL/min) 130 (7) 133 (6) 131 (7)

ERPF (mL/min) 386 (19) 406 (20)* 411 (18)**

RVR (mmHg/mL/min) 0.67 (0.05) 0.60 (0.04)* 0.58 (0.04)**

FF (%) 34 (0.8) 33 (0.7) 32 (0.07)*

Semi-automatic blood pressure data (DINAMAP®)

SBP (mmHg) 149 (5) 142 (4)** 136 (3)**

DBP (mmHg) 93 (3) 87 (3) 85 (3)*

MAP (mmHg) 112 (4) 106 (3)* 102 (3)**

Data are shown as mean (SEM). Abbreviations: BSA: body surface area; GFR: glomerular filtration rate;

ERPF: effective renal plasma flow; FF: filtration fraction, RVR: renal vascular resistance; SBP: systolic blood

pressure; DBP: diastolic blood pressure; MAP: mean arterial pressure.

* P<0.05 vs. baseline

** P<0.01 vs. baseline.

doi:10.1371/journal.pone.0169258.t002

Fig 3. Blood pressure measured by ABPM at baseline and after 6-week treatment with ACEi and DRI. Individual data are shown as well as

mean (SEM). ABPM measurement was unsuccessful in one patient during DRI treatment due to insufficient number of recordings (<80%).

Abbreviations: SBP: systolic blood pressure; DBP: diastolic blood pressure; MAP: mean arterial pressure.

doi:10.1371/journal.pone.0169258.g003
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Discussion

In men with weight excess and hypertension, DRI significantly increased ERPF, and reduced

RVR and FF, along with a significant reduction in systemic blood pressure and albuminuria.

ACEi, which served as a positive control, significantly increased ERPF and reduced RVR, with

a nominal reduction in FF. RAAS activity was significantly reduced by both DRI and ACEi.

Fig 4. RAAS parameters in plasma (upper panel) and urine (lower panel) at baseline and after 6-week treatment with ACEi and DRI. Data

shown as geometric mean (95% CI).

doi:10.1371/journal.pone.0169258.g004

Fig 5. Renal angiotensinogen handling at baseline and after 6-week treatment with ACEi and DRI. Data shown as geometric mean (95% CI).

doi:10.1371/journal.pone.0169258.g005
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This trial demonstrated that DRI is an effective treatment for obese hypertensive men, in line

with the known beneficial effect of ACEi, with a potentially favorable renal profile.

The renal hemodynamic response to DRI, as found in this trial, is in line with previous stud-

ies in essential hypertensives during liberal sodium intake [18,25–29]. Studies that specifically

investigated aliskiren also found a renal vasodilator response [24,30]. Of note, these studies

included normal weight subjects only, whereas overweight and obese subjects could theoreti-

cally benefit most from direct renin blockade. Our trial therefore adds to the current literature

as it is the first to demonstrate an effect of DRI on renal hemodynamics in subjects with weight

excess and hypertension.

We found a significant reduction in automatic twenty-four hour ambulatory and semi-

automatic office blood pressure. In contrast to renal hemodynamics, the effect of DRI on sys-

temic hemodynamics has been relatively well characterized in obese subjects, with studies

reporting of an unequivocal reduction in blood pressure [31–37], that sustained over a mini-

mal period of 6 to 12 months [33,36,37].

Furthermore, we found a pronounced reduction in RAAS activity in response to DRI, as

reflected by a significant reduction in plasma renin activity and a significant increase in both

plasma renin concentration and urinary renin excretion. Moreover, we found a significant

reduction in plasma and urinary aldosterone/renin concentration ratio in response to DRI,

accompanied by a significant reduction in urine/plasma concentration ratio of renin. The rise

in renin excretion combined with the reduction in the urine/plasma concentration ratio of

renin raises the question to what degree these data indicate activation or suppression of the

renal RAAS. Here it is important to realize that the majority of urinary renin is plasma-

derived. This is evidenced by the up to 40-fold higher urinary renin levels in patients with

Dent’s disease or Lowe syndrome, in whom tubular reabsorption of filtered renin (by megalin)

is disturbed [38]. On this basis, urinary renin levels should be corrected for plasma renin levels.

Table 3. Clinical parameters at baseline and after treatment with ACEi and DRI.

Baseline ACEi DRI

Clinical parameters

Body weight (Kg) 101 (3) 100 (3) 100 (3)

ECV (L) 22.7 (1.1) 23.8 (1.3) 24.1 (1.0)

Plasma and serum measurements

Hemoglobin (mmol/L) 9.5 (0.2) 9.5 (0.1) 9.4 (0.2)

Hematocrit (v/v) 0.45 (0.01) 0.45 (0.01) 0.44 (0.01)

Sodium (mmol/L) 141 (0.4) 141 (0.4) 140 (0.5)

Potassium (mmol/L) 3.9 (0.1) 3.9 (0.1) 4.0 (0.1)*

Urea (mmol/L) 6.1 (0.3) 5.9 (0.3) 5.7 (0.3)

Creatinine (μmol/L) 78 (3) 79 (3) 77 (3)

Creatinine clearance (mL/min) 141 (7) 147 (13) 140 (12)

Urine measurements

Albuminuria (mg/day) 20 [9–42] 16 [7–35] 12 [5–28]*

Proteinuria (g/day) 0.1 [0.1–0.1] 0.1 [0.1–0.1] 0.1 [0.1–0.1]

Urinary volume (mL/day) 2106 (195) 2076 (161) 2178 (193)

Creatinine excretion (mmol/day) 15.9 (0.7) 16.9 (1.0) 16.1 (0.6)

Sodium excretion (mmol/day) 205 (21) 248 (16) 223 (16)

Data are shown as mean (SEM) or as geometric mean (95% CI) when indicated.

* P<0.05 vs. baseline.

** P<0.01 vs. baseline.

doi:10.1371/journal.pone.0169258.t003
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Yet, there is also evidence for renin production in the collecting duct. Surprisingly, here angio-

tensin II stimulates local renin release, as opposed to its inhibitory effects on renin release in

the juxtaglomerular apparatus [39,40]. Therefore, given the drop in Angiotensin II after DRI,

and assuming that some urinary renin originates from the collecting duct, a decrease in the

urine/plasma concentration ratio of renin would be expected. Since this is exactly what

occurred, it appears that DRI attenuates RAAS activation in the kidney, i.e., does not result in

selective upregulation of collecting duct renin. Clearly however, alternative explanations, like

alterations in tubular megalin expression, should be considered as well.

Another question that needs to be addressed is to what degree the elevated renin levels dur-

ing DRI would exert angiotensin II-independent effects, via binding to the so-called (pro)

renin receptor [41]. Indeed, in vitro, renin inhibitors do not interfere with such binding [42],

although obviously they do block renin activity. Renin/prorenin binding to this receptor

results in the activation of multiple second messenger pathways [41]. However, the binding

affinity of this receptor for renin and its precursor prorenin was found to be in the nanomolar

range, while their in-vivo levels are many orders below this range, even during DRI treatment

[43, 44]. On this basis, combined with the fact that the (pro)renin receptor is now additionally

known to be an accessory subunit of vacuolar H+-ATPase, displaying multiple effects that are

entirely unrelated to renin and/or prorenin, e.g., with regard to cardiomyocyte autophagy

[45], polyuria and renal acid-base regulation [46], and LDL metabolism [47], this idea is now

being abandoned [48].

Aldosterone levels were significantly reduced by DRI in urine, however, not in plasma,

despite the fact that urinary aldosterone is plasma-derived. This is most likely related to much

lower concentrations in plasma compared to urine, which limits the ability to detect statistical

differences. Our observations are in line with studies stating that plasma aldosterone is a less

sensitive marker of RAAS activity [49]. We found a reduction in urinary angiotensinogen

which was paralleled by a reduction in urine/plasma ratio of angiotensinogen. Urinary angio-

tensinogen might be both kidney- and plasma-derived. In case of the former, the reduction in

urinary angiotensinogen would be suggestive a for a suppression of renal RAAS activity [50].

In case of the latter, angiotensinogen would be a marker for permeability of the glomerular fil-

tration barrier [49, 51]. Our data, showing a similar response of urinary angiotensinogen and

albuminuria to DRI, are consistent with the second concept. Moreover, 2 seminal papers by

Matsusaka et al. [52, 53], making use of kidney-specific angiotensinogen knockout mice,

revealed that, both under normal and pathological conditions, renal angiotensin II production

depends entirely on plasma-derived (i.e., hepatic) angiotensinogen. Therefore, the function of

locally produced angiotensinogen in the kidney, if any, remains controversial.

We believe that our trial adds to the current understanding of the RAAS in response to DRI

by its extensive characterization of multiple RAAS parameters simultaneously, in both plasma

and urine, thereby rendering an effect of DRI not only on systemic, but also on intrarenal

RAAS activity plausible [54,55].

DRI might have a stronger effect on renal hemodynamics than other RAAS blocking agents

[24,55], with possibly a stronger effect on systemic hemodynamics as well [34–36, 54]. One

explanation for this could be that RAAS activity is more efficiently blocked by DRI, as it inter-

venes in the RAAS at its point of activation [56]. Another explanation might be its long phar-

macokinetic half-life (up to 36 hours [56] and/or its ability to penetrate adipose, skeletal and

renal tissue—with renal accumulation of aliskiren up to two weeks after drug withdrawal—

thereby affecting RAAS activity at a tissue level [57, 58]. In our trial, we found only a trend

towards stronger effect of DRI, although it should be noted that our trial was not designed nor

powered to investigate a quantitative difference in efficacy between DRI and ACEi. A quantita-

tive difference in efficacy can only be adequately investigated in a dose-response study.
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Several limitations of this trial should be considered. First of all, we studied the effects of

DRI during liberal sodium intake, while the effect of RAAS blockade is known to be potenti-

ated by even mild sodium restriction, or diuretics [59]. The efficacy in a setting of clinical treat-

ment of hypertension might thus been underestimated. Second, as the number of studied

subjects was relatively small, we optimized the signal-to-noise ratio by solely including men, as

physiological variation in circulating estrogens levels in women is known to influence renal

hemodynamic measurements and RAAS activity [60,61]. Whereas the cross-over design of the

trial, with every subject being its own control, provided us adequate power to detect effects of

DRI, however, this set-up limits the generalizability of the results. Third, we did not include a

control group to compare the renal response to DRI between healthy and obese subjects.

In conclusion, we found a favorable renal and systemic hemodynamic response to DRI,

accompanied by a reduction in RAAS activity and albuminuria, in men with weight excess and

hypertension.
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