6 research outputs found

    hnRNP Q mediates a phase-dependent translation-coupled mRNA decay of mouse Period3

    No full text
    Daily mRNA oscillations of circadian clock genes largely depend on transcriptional regulation. However, several lines of evidence highlight the critical role of post-transcriptional regulation in the oscillations of circadian mRNA oscillations. Clearly, variations in the mRNA decay rate lead to changes in the cycling profiles. However, the mechanisms controlling the mRNA stability of clock genes are not fully understood. Here we demonstrate that the turnover rate of mouse Period3 (mPer3) mRNA is dramatically changed in a circadian phase-dependent manner. Furthermore, the circadian regulation of mPer3 mRNA stability requires the cooperative function of 5'- and 3'-untranslated regions (UTRs). Heterogeneous nuclear ribonucleoprotein Q (hnRNP Q) binds to both 5'- and 3'-UTR and triggers enhancement of translation and acceleration of mRNA decay. We propose the phase-dependent translation coupled mRNA decay mediated by hnRNP Q as a new regulatory mechanism of the rhythmically regulated decay of mPer3 mRNA.open1116sciescopu

    Mechanism of histone lysine methyl transfer revealed by the structure of SET7/9-AdoMet

    No full text
    The methylation of lysine residues of histones plays a pivotal role in the regulation of chromatin structure and gene expression. Here, we report two crystal structures of SET7/9, a histone methyltransferase (HMTase) that transfers methyl groups to Lys4 of histone H3, in complex with S-adenosyl-L-methionine (AdoMet) determined at 1.7 and 2.3 A resolution. The structures reveal an active site consisting of: (i) a binding pocket between the SET domain and a c-SET helix where an AdoMet molecule in an unusual conformation binds; (ii) a narrow substrate-specific channel that only unmethylated lysine residues can access; and (iii) a catalytic tyrosine residue. The methyl group of AdoMet is directed to the narrow channel where a substrate lysine enters from the opposite side. We demonstrate that SET7/9 can transfer two but not three methyl groups to unmodified Lys4 of H3 without substrate dissociation. The unusual features of the SET domain-containing HMTase discriminate between the un- and methylated lysine substrate, and the methylation sites for the histone H3 tail.close726

    Activating Signal Cointegrator 2 Belongs to a Novel Steady-State Complex That Contains a Subset of Trithorax Group Proteins

    Get PDF
    Many transcription coactivators interact with nuclear receptors in a ligand- and C-terminal transactivation function (AF2)-dependent manner. These include activating signal cointegrator 2 (ASC-2), a recently isolated transcriptional coactivator molecule, which is amplified in human cancers and stimulates transactivation by nuclear receptors and numerous other transcription factors. In this report, we show that ASC-2 belongs to a steady-state complex of approximately 2 MDa (ASC-2 complex [ASCOM]) in HeLa nuclei. ASCOM contains retinoblastoma-binding protein RBQ-3, α/β-tubulins, and trithorax group proteins ALR-1, ALR-2, HALR, and ASH2. In particular, ALR-1/2 and HALR contain a highly conserved 130- to 140-amino-acid motif termed the SET domain, which was recently implicated in histone H3 lysine-specific methylation activities. Indeed, recombinant ALR-1, HALR, and immunopurified ASCOM exhibit very weak but specific H3-lysine 4 methylation activities in vitro, and transactivation by retinoic acid receptor appears to involve ligand-dependent recruitment of ASCOM and subsequent transient H3-lysine 4 methylation of the promoter region in vivo. Thus, ASCOM may represent a distinct coactivator complex of nuclear receptors. Further characterization of ASCOM will lead to a better understanding of how nuclear receptors and other transcription factors mediate transcriptional activation
    corecore