123 research outputs found

    Characterization and sequence analysis of the lsg (LOS synthesis genes) locus from Haemophilus influenzae type b

    Full text link
    Analysis of the lsg (LOS synthesis genes) cluster in Escherichia coli strain K12 and mutations in the lsg locus in Haemophilus influenzae type b indicated the presence of 3 regions responsible for sequential modifications of E. coli lipopolysaccharide (LPS). Sequencing of the lsg region yielded 7,435 bp that encompassed 7 complete and 1 partial open reading frames (ORFs 1-8). The predicted product of ORF1 had homology to the consensus sequence of cytochrome b proteins (21% identity, 51% similarity) and to other transmembrane proteins. The products of ORF5 and ORF6 share overall 23% identity and 49% similarity with each other. The ORF6 protein had high homology with the product of ORF275 of the E. coli rfb gene cluster (40% identity, 58% similarity), whose function is not known. Multiple sequence alignment of the ORF5 and ORF6 proteins with the RfbB, RfbJ and RfbX proteins revealed conserved motifs over the N-terminal half region of all these proteins. The products of ORF7 and ORF8 are homologous with Azotobacter vinelandii MolA protein (30% identity, 51% similarity) and MolB protein (26% identity, 48% similarity), respectively. The promoter regions of ORF1, 7 and 8 were determined by primer extension analysis and found to be similar to bacterial Οƒ70-dependent promoters. ORF7 and ORF8 are transcribed into diverse orientation. At least 5 of the encoded proteins have been identified using coupled E. coli transcription/translation system and labeling with [35S]-methionine. We conclude that the genetic organization of the lsg biosynthesis pathway involves multiple operons that lead to the assembly of an H. influenzae LOS structure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67077/2/10.1177_096805199400100305.pd

    Infection of Cultured Human Endothelial Cells by Legionella pneumophila

    Get PDF
    Legionella pneumophila is a gram-negative pathogen that causes a severe pneumonia known as Legionnaires' disease. Here, we demonstrate for the first time that L. pneumophila infects and grows within cultured human endothelial cells. Endothelial infection may contribute to lung damage observed during Legionnaires' disease and to systemic spread of this organism

    Monitoring of Gene Expression in Bacteria during Infections Using an Adaptable Set of Bioluminescent, Fluorescent and Colorigenic Fusion Vectors

    Get PDF
    A family of versatile promoter-probe plasmids for gene expression analysis was developed based on a modular expression plasmid system (pZ). The vectors contain different replicons with exchangeable antibiotic cassettes to allow compatibility and expression analysis on a low-, midi- and high-copy number basis. Suicide vector variants also permit chromosomal integration of the reporter fusion and stable vector derivatives can be used for in vivo or in situ expression studies under non-selective conditions. Transcriptional and translational fusions to the reporter genes gfpmut3.1, amCyan, dsRed2, luxCDABE, phoA or lacZ can be constructed, and presence of identical multiple cloning sites in the vector system facilitates the interchange of promoters or reporter genes between the plasmids of the series. The promoter of the constitutively expressed gapA gene of Escherichia coli was included to obtain fluorescent and bioluminescent expression constructs. A combination of the plasmids allows simultaneous detection and gene expression analysis in individual bacteria, e.g. in bacterial communities or during mouse infections. To test our vector system, we analyzed and quantified expression of Yersinia pseudotuberculosis virulence genes under laboratory conditions, in association with cells and during the infection process

    Comprehensive Identification of Protein Substrates of the Dot/Icm Type IV Transporter of Legionella pneumophila

    Get PDF
    A large number of proteins transferred by the Legionella pneumophila Dot/Icm system have been identified by various strategies. With no exceptions, these strategies are based on one or more characteristics associated with the tested proteins. Given the high level of diversity exhibited by the identified proteins, it is possible that some substrates have been missed in these screenings. In this study, we took a systematic method to survey the L. pneumophila genome by testing hypothetical orfs larger than 300 base pairs for Dot/Icm-dependent translocation. 798 of the 832 analyzed orfs were successfully fused to the carboxyl end of Ξ²-lactamase. The transfer of the fusions into mammalian cells was determined using the Ξ²-lactamase reporter substrate CCF4-AM. These efforts led to the identification of 164 proteins positive in translocation. Among these, 70 proteins are novel substrates of the Dot/Icm system. These results brought the total number of experimentally confirmed Dot/Icm substrates to 275. Sequence analysis of the C-termini of these identified proteins revealed that Lpg2844, which contains few features known to be important for Dot/Icm-dependent protein transfer can be translocated at a high efficiency. Thus, our efforts have identified a large number of novel substrates of the Dot/Icm system and have revealed the diverse features recognizable by this protein transporter

    Imaging of Bubonic Plague Dynamics by In Vivo Tracking of Bioluminescent Yersinia pestis

    Get PDF
    Yersinia pestis dissemination in a host is usually studied by enumerating bacteria in the tissues of animals sacrificed at different times. This laborious methodology gives only snapshots of the infection, as the infectious process is not synchronized. In this work we used in vivo bioluminescence imaging (BLI) to follow Y. pestis dissemination during bubonic plague. We first demonstrated that Y. pestis CO92 transformed with pGEN-luxCDABE stably emitted bioluminescence in vitro and in vivo, while retaining full virulence. The light produced from live animals allowed to delineate the infected organs and correlated with bacterial loads, thus validating the BLI tool. We then showed that the first step of the infectious process is a bacterial multiplication at the injection site (linea alba), followed by a colonization of the draining inguinal lymph node(s), and subsequently of the ipsilateral axillary lymph node through a direct connection between the two nodes. A mild bacteremia and an effective filtering of the blood stream by the liver and spleen probably accounted for the early bacterial blood clearance and the simultaneous development of bacterial foci within these organs. The saturation of the filtering capacity of the spleen and liver subsequently led to terminal septicemia. Our results also indicate that secondary lymphoid tissues are the main targets of Y. pestis multiplication and that colonization of other organs occurs essentially at the terminal phase of the disease. Finally, our analysis reveals that the high variability in the kinetics of infection is attributable to the time the bacteria remain confined at the injection site. However, once Y. pestis has reached the draining lymph nodes, the disease progresses extremely rapidly, leading to the invasion of the entire body within two days and to death of the animals. This highlights the extraordinary capacity of Y. pestis to annihilate the host innate immune response

    Toxoplasma Effector MAF1 Mediates Recruitment of Host Mitochondria and Impacts the Host Response

    Get PDF
    Recent information has revealed the functional diversity and importance of mitochondria in many cellular processes including orchestrating the innate immune response. Intriguingly, several infectious agents, such as Toxoplasma, Legionella, and Chlamydia, have been reported to grow within vacuoles surrounded by host mitochondria. Although many hypotheses have been proposed for the existence of host mitochondrial association (HMA), the causes and biological consequences of HMA have remained unanswered. Here we show that HMA is present in type I and III strains of Toxoplasma but missing in type II strains, both in vitro and in vivo. Analysis of F1 progeny from a type IIΓ—III cross revealed that HMA is a Mendelian trait that we could map. We use bioinformatics to select potential candidates and experimentally identify the polymorphic parasite protein involved, mitochondrial association factor 1 (MAF1). We show that introducing the type I (HMA+) MAF1 allele into type II (HMA-) parasites results in conversion to HMA+ and deletion of MAF1 in type I parasites results in a loss of HMA. We observe that the loss and gain of HMA are associated with alterations in the transcription of host cell immune genes and the in vivo cytokine response during murine infection. Lastly, we use exogenous expression of MAF1 to show that it binds host mitochondria and thus MAF1 is the parasite protein directly responsible for HMA. Our findings suggest that association with host mitochondria may represent a novel means by which Toxoplasma tachyzoites manipulate the host. The existence of naturally occurring HMA+ and HMA- strains of Toxoplasma, Legionella, and Chlamydia indicates the existence of evolutionary niches where HMA is either advantageous or disadvantageous, likely reflecting tradeoffs in metabolism, immune regulation, and other functions of mitochondria. Β© 2014 Pernas et al

    Subcellular Antigen Location Influences T-Cell Activation during Acute Infection with Toxoplasma gondii

    Get PDF
    Effective control of the intracellular protozoan parasite Toxoplasma gondii depends on the activation of antigen-specific CD8+ T-cells that manage acute disease and prevent recrudescence during chronic infection. T-cell activation in turn, requires presentation of parasite antigens by MHC-I molecules on the surface of antigen presenting cells. CD8+ T-cell epitopes have been defined for several T. gondii proteins, but it is unclear how these antigens enter into the presentation pathway. We have exploited the well-characterized model antigen ovalbumin (OVA) to investigate the ability of parasite proteins to enter the MHC-I presentation pathway, by engineering recombinant expression in various organelles. CD8+ T-cell activation was assayed using β€˜B3Z’ reporter cells in vitro, or adoptively-transferred OVA-specific β€˜OT-I’ CD8+ T-cells in vivo. As expected, OVA secreted into the parasitophorous vacuole strongly stimulated antigen-presenting cells. Lower levels of activation were observed using glycophosphatidyl inositol (GPI) anchored OVA associated with (or shed from) the parasite surface. Little CD8+ T-cell activation was detected using parasites expressing intracellular OVA in the cytosol, mitochondrion, or inner membrane complex (IMC). These results indicate that effective presentation of parasite proteins to CD8+ T-cells is a consequence of active protein secretion by T. gondii and escape from the parasitophorous vacuole, rather than degradation of phagocytosed parasites or parasite products

    Glutamate mediated metabolic neutralization mitigates propionate toxicity in intracellular Mycobacterium tuberculosis

    Get PDF
    Metabolic networks in biological systems are interconnected, such that malfunctioning parts can be corrected by other parts within the network, a process termed adaptive metabolism. Unlike Bacillus Calmette-GuΓ©rin (BCG), Mycobacterium tuberculosis (Mtb) better manages its intracellular lifestyle by executing adaptive metabolism. Here, we used metabolomics and identified glutamate synthase (GltB/D) that converts glutamine to glutamate (Q → E) as a metabolic effort used to neutralize cytoplasmic pH that is acidified while consuming host propionate carbon through the methylcitrate cycle (MCC). Methylisocitrate lyase, the last step of the MCC, is intrinsically downregulated in BCG, leading to obstruction of carbon flux toward central carbon metabolism, accumulation of MCC intermediates, and interference with GltB/D mediated neutralizing activity against propionate toxicity. Indeed, vitamin B12 mediated bypass MCC and additional supplement of glutamate led to selectively correct the phenotypic attenuation in BCG and restore the adaptive capacity of BCG to the similar level of Mtb phenotype. Collectively, a defective crosstalk between MCC and Q → E contributes to attenuation of intracellular BCG. Furthermore, GltB/D inhibition enhances the level of propionate toxicity in Mtb. Thus, these findings revealed a new adaptive metabolism and propose GltB/D as a synergistic target to improve the antimicrobial outcomes of MCC inhibition in Mtb

    Identification of Chromosomal Genes in Yersinia pestis that Influence Type III Secretion and Delivery of Yops into Target Cells

    Get PDF
    Pathogenic Yersinia species possess a type III secretion system, which is required for the delivery of effector Yop proteins into target cells during infection. Genes encoding the type III secretion machinery, its substrates, and several regulatory proteins all reside on a 70-Kb virulence plasmid. Genes encoded in the chromosome of yersiniae are thought to play important roles in bacterial perception of host environments and in the coordinated activation of the type III secretion pathway. Here, we investigate the contribution of chromosomal genes to the complex regulatory process controlling type III secretion in Yersinia pestis. Using transposon mutagenesis, we identified five chromosomal genes required for expression or secretion of Yops in laboratory media. Four out of the five chromosomal mutants were defective to various extents at injecting Yops into tissue culture cells. Interestingly, we found one mutant that was not able to secrete in vitro but was fully competent for injecting Yops into host cells, suggesting independent mechanisms for activation of the secretion apparatus. When tested in a mouse model of plague disease, three mutants were avirulent, whereas two strains were severely attenuated. Together these results demonstrate the importance of Y. pestis chromosomal genes in the proper function of type III secretion and in the pathogenesis of plague

    AMPK in Pathogens

    Get PDF
    During host–pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host–pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.CIHR -Canadian Institutes of Health Researc
    • …
    corecore