44 research outputs found

    Indoor residual spraying with a non-pyrethroid insecticide reduces the reservoir of <i>Plasmodium falciparum</i> in a high-transmission area in northern Ghana

    Get PDF
    High-malaria burden countries in sub-Saharan Africa are shifting from malaria control towards elimination. Hence, there is need to gain a contemporary understanding of how indoor residual spraying (IRS) with non-pyrethroid insecticides when combined with long-lasting insecticidal nets (LLINs) impregnated with pyrethroid insecticides, contribute to the efforts of National Malaria Control Programmes to interrupt transmission and reduce the reservoir of Plasmodium falciparum infections across all ages. Using an interrupted time-series study design, four age-stratified malariometric surveys, each of ~2,000 participants, were undertaken pre- and post-IRS in Bongo District, Ghana. Following the application of three-rounds of IRS, P. falciparum transmission intensity declined, as measured by a >90% reduction in the monthly entomological inoculation rate. This decline was accompanied by reductions in parasitological parameters, with participants of all ages being significantly less likely to harbor P. falciparum infections at the end of the wet season post-IRS (aOR = 0.22 [95% CI: 0.19–0.26], p-value < 0.001). In addition, multiplicity of infection (MOIvar) was measured using a parasite fingerprinting tool, designed to capture within-host genome diversity. At the end of the wet season post-IRS, the prevalence of multi-genome infections declined from 75.6% to 54.1%. This study demonstrates that in areas characterized by high seasonal malaria transmission, IRS in combination with LLINs can significantly reduce the reservoir of P. falciparum infection. Nonetheless despite this success, 41.6% of the population, especially older children and adolescents, still harboured multi-genome infections. Given the persistence of this diverse reservoir across all ages, these data highlight the importance of sustaining vector control in combination with targeted chemotherapy to move high-transmission settings towards pre-elimination. This study also points to the benefits of molecular surveillance to ensure that incremental achievements are not lost and that the goals advocated for in the WHO’s High Burden to High Impact strategy are realized

    A Randomized, Double-Blind, Placebo-Controlled, Dose-Ranging Trial of Tafenoquine for Weekly Prophylaxis against \u3ci\u3ePlasmodium falciparum\u3c/i\u3e

    Get PDF
    Tafenoquine is a promising new 8-aminoquinoline drug that may be useful for malaria prophylaxis in nonpregnant persons with normal glucose-6-phosphate dehydrogenase (G6PD) function. A randomized, doubleblind, placebo-controlled chemoprophylaxis trial was conducted with adult residents of northern Ghana to determine the minimum effective weekly dose of tafenoquine for the prevention of infection by Plasmodium falciparum. The primary end point was a positive malaria blood smear result during the 13 weeks of study drug coverage. Relative to the placebo, all 4 tafenoquine dosages demonstrated significant protection against P. falciparum infection: for 25 mg/week, protective efficacy was 32% (95% confidence interval [CI], 20%–43%); for 50 mg/week, 84% (95% CI, 75%–91%); for 100 mg/week, 87% (95% CI, 78%–93%); and for 200 mg/week, 86% (95% CI, 76%–92%). The mefloquine dosage of 250 mg/week also demonstrated significant protection against P. falciparum infection (protective efficacy, 86%; 95% CI, 72%–93%). There was little difference between study groups in the adverse events reported, and there was no evidence of a relationship between tafenoquine dosage and reports of physical complaints or the occurrence of abnormal laboratory parameters. Tafenoquine dosages of 50, 100, and 200 mg/week were safe, well tolerated, and effective against P. falciparum infection in this study population

    Understanding and retention of the informed consent process among parents in rural northern Ghana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The individual informed consent model remains critical to the ethical conduct and regulation of research involving human beings. Parental informed consent process in a rural setting of northern Ghana was studied to describe comprehension and retention among parents as part of the evaluation of the existing informed consent process.</p> <p>Methods</p> <p>The study involved 270 female parents who gave consent for their children to participate in a prospective cohort study that evaluated immune correlates of protection against childhood malaria in northern Ghana. A semi-structured interview with questions based on the informed consent themes was administered. Parents were interviewed on their comprehension and retention of the process and also on ways to improve upon the existing process.</p> <p>Results</p> <p>The average parental age was 33.3 years (range 18–62), married women constituted a majority (91.9%), Christians (71.9%), farmers (62.2%) and those with no formal education (53.7%). Only 3% had ever taken part in a research and 54% had at least one relation ever participate in a research. About 90% of parents knew their children were involved in a research study that was not related to medical care, and 66% said the study procedures were thoroughly explained to them. Approximately, 70% recalled the study involved direct benefits compared with 20% for direct risks. The majority (95%) understood study participation was completely voluntary but only 21% recalled they could withdraw from the study without giving reasons. Younger parents had more consistent comprehension than older ones. Maternal reasons for allowing their children to take part in the research were free medical care (36.5%), better medical care (18.8%), general benefits (29.4%), contribution to research in the area (8.8%) and benefit to the community (1.8%). Parental suggestions for improving the consent process included devoting more time for explanations (46.9%), use of the local languages (15.9%) and obtaining consent at home (10.3%).</p> <p>Conclusion</p> <p>Significant but varied comprehension of the informed consent process exists among parents who participate in research activities in northern Ghana and it appears the existing practices are fairly effective in informing research participants in the study area.</p

    Antibody levels to multiple malaria vaccine candidate antigens in relation to clinical malaria episodes in children in the Kasena-Nankana district of Northern Ghana

    Get PDF
    BACKGROUND: Considering the natural history of malaria of continued susceptibility to infection and episodes of illness that decline in frequency and severity over time, studies which attempt to relate immune response to protection must be longitudinal and have clearly specified definitions of immune status. Putative vaccines are expected to protect against infection, mild or severe disease or reduce transmission, but so far it has not been easy to clearly establish what constitutes protective immunity or how this develops naturally, especially among the affected target groups. The present study was done in under six year old children to identify malaria antigens which induce antibodies that correlate with protection from Plasmodium falciparum malaria. METHODS: In this longitudinal study, the multiplex assay was used to measure IgG antibody levels to 10 malaria antigens (GLURP R0, GLURP R2, MSP3 FVO, AMA1 FVO, AMA1 LR32, AMA1 3D7, MSP1 3D7, MSP1 FVO, LSA-1and EBA175RII) in 325 children aged 1 to 6 years in the Kassena Nankana district of northern Ghana. The antigen specific antibody levels were then related to the risk of clinical malaria over the ensuing year using a negative binomial regression model. RESULTS: IgG levels generally increased with age. The risk of clinical malaria decreased with increasing antibody levels. Except for FMPOII-LSA, (p = 0.05), higher IgG levels were associated with reduced risk of clinical malaria (defined as axillary temperature ≥37.5°C and parasitaemia of ≥5000 parasites/ul blood) in a univariate analysis, upon correcting for the confounding effect of age. However, in a combined multiple regression analysis, only IgG levels to MSP1-3D7 (Incidence rate ratio = 0.84, [95% C.I.= 0.73, 0.97, P = 0.02]) and AMA1 3D7 (IRR = 0.84 [95% C.I.= 0.74, 0.96, P = 0.01]) were associated with a reduced risk of clinical malaria over one year of morbidity surveillance. CONCLUSION: The data from this study support the view that a multivalent vaccine involving different antigens is most likely to be more effective than a monovalent one. Functional assays, like the parasite growth inhibition assay will be necessary to confirm if these associations reflect functional roles of antibodies to MSP1-3D7 and AMA1-3D7 in this population

    Impact of an Irrigation Dam on the Transmission and Diversity of Plasmodium falciparum in a Seasonal Malaria Transmission Area of Northern Ghana

    No full text
    Water bodies such as dams are known to alter the local transmission patterns of a number of infectious diseases, especially those transmitted by insects and other arthropod vectors. The impact of an irrigation dam on submicroscopic asexual parasite carriage in individuals living in a seasonal malaria transmission area of northern Ghana was investigated. A total of 288 archived DNA samples from two cross-sectional surveys in two communities in the Bongo District of Northern Ghana were analysed. Parasite density was determined by light microscopy and PCR, and parasite diversity was assessed by genotyping of the polymorphic Plasmodium falciparum msp2 block-3 region. Submicroscopic parasitaemia was estimated as the proportional difference between positive samples identified by PCR and microscopy. Dry season submicroscopic parasite prevalence was significantly higher (71.0%, p=0.013) at the dam site compared with the nondam site (49.2%). Similarly, wet season submicroscopic parasite prevalence was significantly higher at the dam site (54.5%, p=0.008) compared with the nondam site (33.0%). There was no difference in parasite density between sites in the dry season (p=0.90) and in the wet season (p=0.85). Multiplicity of infection (MOI) based on PCR data was significantly higher at the dam site compared with the nondam site during the dry season (p<0.0001) but similar between sites during the wet season. MOI at the nondam site was significantly higher in the wet season than in the dry season (2.49, 1.26, p<0.0001) but similar between seasons at the dam site. Multivariate analysis showed higher odds of carrying submicroscopic parasites at the dam site in both dry season (OR = 7.46, 95% CI = 3.07–18.15) and in wet season (OR = 1.73, 95% CI = 1.04–2.86). The study findings suggest that large water bodies impact year-round carriage of submicroscopic parasites and sustain Plasmodium transmission

    Identification and molecular characterisation of Colletotrichum species from avocado, citrus and pawpaw in Ghana

    No full text
    Owing to previous identifications based solely on morphological characteristics, the identity of the causal agents of anthracnose disease of pawpaw and avocado in Ghana is in doubt. In addition, the pathogen has not been identified previously on citrus. In this study, isolates of the pathogen were obtained from anthracnose lesions on avocado and pawpaw, and atypical anthracnose lesions on citrus. The isolates were identified using PCR with speciesspecific primers, complemented by phylogenetic analysis of nucleotide sequences of the internal transcribed spacer region and partial glyceraldehyde-3-phosphate dehydrogenase gene. The pathogenicity of the isolated fungi was determined on detached matured fruits. All isolates, including those isolated from citrus, were identified as Colletotrichum gloeosporioides from the expected 480 bp PCR products amplified by PCR. The phylogenetic analysis showed that isolates from avocado and pawpaw were C. siamense, rather than C. gloeosporioides, whereas isolates from citrus were C. gloeosporioides sensu stricto. The pathogens were able to induce disease only on wounded mature fruits.Keywords: Colletotrichum gloeosporioides sensu stricto, Colletotrichum siamense, glyceraldehyde-3-phosphate dehydrogenase, internal transcribed spacer regio

    Crop loss, aetiology, and epidemiology of citrus black spot in Ghana

    No full text
    Citrus Black Spot (CBS), caused by Guignardia citricarpa, was detected for the first time in Ghana and in West Africa. The disease was first observed in the Eastern Region in 1999 with typical disease symptoms including hard spot, virulent spot and false melanose were observed on several citrus species. A survey revealed that the disease has reached epidemic levels in the citrus-producing areas of the Eastern and Ashanti regions and is spreading rapidly within these areas and to other regions of the country. Currently, CBS is the most important fruit disease of citrus in Ghana, causing about 22% crop loss. Although the disease does not cause postharvest decay and the internal quality of the fruit is not affected, significant amounts of blemished fruit are discarded at the markets. Disease incidence and severity was found to be higher on mature than on young citrus trees. Pycnidia were found on fruit with hard spot symptoms, and pycnidia and pseudothecia typical of Guignardia spp. were found on decomposing leaves. Two species, G. citricarpa and G. mangiferae, were isolated from 15% of the samples collected and identified using the Oatmeal Agar test and by PCR with species-specific DNA primers. Isolates of G. citricarpa produced CBS symptoms after 80 to 233 days on 75% of the artificially inoculated young fruit of Valencia Late sweet orange. The fungus was re-isolated from symptomatic, inoculated fruit completing Koch&#39;s postulates. Isolates of the endophyte G. mangiferae did not induce symptoms in the pathogenicity tests. In epidemiological studies, infections were detected from November to February for the minor cropping season and from May to November for the major season. Fruit of Valencia Late sweet orange were susceptible to G. citricarpa infection for up to 7 months after petal fall. Knowledge of the disease cycle in Ghana will improve methods for disease control
    corecore