21 research outputs found

    Finished Genome of the Fungal Wheat Pathogen Mycosphaerella graminicola Reveals Dispensome Structure, Chromosome Plasticity, and Stealth Pathogenesis.

    Get PDF
    The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicolawas sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed “mesosynteny” is very different from synteny seen between other organisms. A surprising feature of the M. graminicolagenome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic stage of infection and may have evolved from endophytic ancestors

    Liquid States : Exhibition of Video Art and Cinema Beyond = Stati Liquidi : Video d'arte e cinema oltre.

    No full text
    "A dip in the ocean of international creativity at its most poetic and radical, one that has experimental video art swimming alongside a fresh gaze on society and the world: Gene Youngblood's "expanded cinema", thirty years on; theoretical and creative pathways through the audiovisual led by Michel Chion; the long existence and "resistance" of Living Theatre; the decades-old "poetronics" of Gianni Toti, together with the poetronic compilation of young independent videomakers. Music, literature, poetry, cinema, dance - but also portraits of our stricken planet, the Utopian dreams of communication from yesterday and today. And more: the competition on "Film and the Ego"; music videos by Floria Sigismondi; the existential thresholds crossed in the work of Francisco Ruiz De Infante; the insecure personal and media identities explored by Bjorn Melhus; "travel pages" recorded by Giuseppe Cederna and Giuseppe Baresi; "cartographies" drawn from dance and urban spaces by Philippe Saire and his company; tributes to Studio Azzurro and Monica Petracci; experimentation in electronic music and video." -- Publisher's website
    corecore