154 research outputs found

    BRAND – search for BSM physics at TeV scale by exploring transverse polarization of electrons emitted in neutron decay

    Get PDF
    Neutron and nuclear beta decay correlation coefficients are linearly sensitive to the exotic scalar and tensor interactions that are not included in the Standard Model (SM). The proposed experiment will measure simultaneously 11 neutron correlation coefficients (a, a, B, D, H, L, N, R, S, U, V) where 7 of them (H, L, N, R, S, U, V) depend on the transverse electron polarization – a quantity that vanishes for the SM weak interaction. The neutron decay correlation coefficients H, L, S, U, V were never attempted experimentally before. The expected ultimate sensitivity of the proposed experiment that currently takes off on the cold neutron beamline PF1B at the Institut Laue-Langevin, Grenoble, France, is comparable to that of the planned electron spectrum shape measurements in neutron and nuclear β decays but offers completely different systematics and additional sensitivity to imaginary parts of the scalar and tensor couplings

    Improving Photoelectron Counting and Particle Identification in Scintillation Detectors with Bayesian Techniques

    Full text link
    Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector.Comment: 16 pages, 16 figure

    Intermittent fasting causes metabolic stress and leucopenia in young mice

    Get PDF
    Overweight and obesity became the worldwide epidemic resulting from overeating especially when a so-called Western diet rich in carbohydrates and fats is used. It is widely accepted that limitation of food consumption could help to withstand such state of adult organism, but information about younger groups is contradictory. The present study was undertaken to characterize the effects of intermittent fasting, using an every other day (EOD) fasting/feeding protocol, on hematological parameters and biochemical blood plasma indices in young mice from one to two months old. It was shown that intermittently fasted mice were characterized by a reduced body weight, reduced total number of blood leucocytes, lower glucose and lactate levels and higher activity of alanine aminotransferase and aspartate aminotransferase in blood plasma as compared with the age-matched control mice. To gain the same mass EOD animals needed to eat more food than ad libitum fed animals. These differences may probably be explained by a need to expend certain resources to combat stress induced by intermittent fasting. Our data showed that EOD feeding at a young age may negatively influence young mammals

    Systematics of low energy collective states in neutron-rich Cd isotopes

    Get PDF
    It has been shown that there are significant deviations from the expected U(5) dynamical symmetry for 110,112,114,116Cd. However, there is very significant mixing with intruder states in this region. In this paper, we investigated states in the heavier 120,124,126Cd populated via beta decay. These nuclei exhibit similar patterns to the lighter Cd isotopes even though the intruder states are much higher in energy. © Published under licence by IOP Publishing Ltd

    The French Didactic Tradition in Mathematics

    Get PDF
    This chapter presents the French didactic tradition. It first describes theemergence and development of this tradition according to four key features (role ofmathematics and mathematicians, role of theories, role of design of teaching andlearning environments, and role of empirical research), and illustrates it through two case studies respectively devoted to research carried out within this traditionon algebra and on line symmetry-reflection. It then questions the influence of thistradition through the contributions of four researchers from Germany, Italy, Mexicoand Tunisia, before ending with a short epilogue

    Teaching and Learning of Calculus

    Get PDF
    This survey focuses on the main trends in the field of calculus education. Despite their variety, the findings reveal a cornerstone issue that is strongly linked to the formalism of calculus concepts and to the difficulties it generates in the learning and teaching process. As a complement to the main text, an extended bibliography with some of the most important references on this topic is included. Since the diversity of the research in the field makes it difficult to produce an exhaustive state-of-the-art summary, the authors discuss recent developments that go beyond this survey and put forward new research questions

    Study of cosmogenic activation above ground for the DarkSide-20k experiment

    Get PDF
    The activation of materials due to exposure to cosmic rays may become an important background source for experiments investigating rare event phenomena. DarkSide-20k, currently under construction at the Laboratori Nazionali del Gran Sasso, is a direct detection experiment for galactic dark matter particles, using a two-phase liquid-argon Time Projection Chamber (TPC) filled with 49.7 tonnes (active mass) of Underground Argon (UAr) depleted in 39Ar. Despite the outstanding capability of discriminating / background in argon TPCs, this background must be considered because of induced dead time or accidental coincidences mimicking dark-matter signals and it is relevant for low-threshold electron-counting measurements. Here, the cosmogenic activity of relevant long-lived radioisotopes induced in the experiment has been estimated to set requirements and procedures during preparation of the experiment and to check that it is not dominant over primordial radioactivity; particular attention has been paid to the activation of the 120 t of UAr used in DarkSide-20k. Expected exposures above ground and production rates, either measured or calculated, have been considered in detail. From the simulated counting rates in the detector due to cosmogenic isotopes, it is concluded that activation in copper and stainless steel is not problematic. The activity of 39Ar induced during extraction, purification and transport on surface is evaluated to be 2.8% of the activity measured in UAr by DarkSide-50 experiment, which used the same underground source, and thus considered acceptable. Other isotopes in the UAr such as 37Ar and 3H are shown not to be relevant due to short half-life and assumed purification methods

    Measurement of isotopic separation of argon with the prototype of the cryogenic distillation plant Aria for dark matter searches

    Get PDF
    The Aria cryogenic distillation plant, located in Sardinia, Italy, is a key component of the DarkSide-20k experimental program for WIMP dark matter searches at the INFN Laboratori Nazionali del Gran Sasso, Italy. Aria is designed to purify the argon, extracted from underground wells in Colorado, USA, and used as the DarkSide-20k target material, to detector-grade quality. In this paper, we report the first measurement of argon isotopic separation by distillation with the 26 m tall Aria prototype. We discuss the measurement of the operating parameters of the column and the observation of the simultaneous separation of the three stable argon isotopes: 36Ar , 38Ar , and 40Ar . We also provide a detailed comparison of the experimental results with commercial process simulation software. This measurement of isotopic separation of argon is a significant achievement for the project, building on the success of the initial demonstration of isotopic separation of nitrogen using the same equipment in 2019

    Study on cosmogenic activation above ground for the DarkSide-20k project

    Get PDF
    The activation of materials due to the exposure to cosmic rays may become an important background source for experiments investigating rare event phenomena. DarkSide-20k is a direct detection experiment for galactic dark matter particles, using a two-phase liquid argon time projection chamber filled with 49.7 tonnes (active mass) of Underground Argon (UAr) depleted in 39Ar. Here, the cosmogenic activity of relevant long-lived radioisotopes induced in the argon and other massive components of the set-up has been estimated; production of 120 t of radiopure UAr is foreseen. The expected exposure above ground and production rates, either measured or calculated, have been considered. From the simulated counting rates in the detector due to cosmogenic isotopes, it is concluded that activation in copper and stainless steel is not problematic. Activation of titanium, considered in early designs but not used in the final design, is discussed. The activity of 39Ar induced during extraction, purification and transport on surface, in baseline conditions, is evaluated to be 2.8% of the activity measured in UAr from the same source, and thus considered acceptable. Other products in the UAr such as 37Ar and 3H are shown to not be relevant due to short half-life and assumed purification methods
    corecore