191 research outputs found

    Optimized gyrosynchrotron algorithms and fast codes

    Full text link
    Gyrosynchrotron (GS) emission of charged particles spiraling in magnetic fields plays an exceptionally important role in astrophysics. In particular, this mechanism makes a dominant contribution to the continuum solar and stellar radio emissions. However, the available exact equations describing the emission process are extremely slow computationally, thus limiting the diagnostic capabilities of radio observations. In this work, we present approximate GS codes capable of fast calculating the emission from anisotropic electron distributions. The computation time is reduced by several orders of magnitude compared with the exact formulae, while the computation error remains within a few percent. The codes are implemented as the executable modules callable from IDL; they are made available for users via web sites.Comment: Proceedings of the IAU Symposium 274 "Advances in Plasma Astrophysics

    3D Radio and X-Ray Modeling and Data Analysis Software: Revealing Flare Complexity

    Get PDF
    We have undertaken a major enhancement of our IDL-based simulation tools developed earlier for modeling microwave and X-ray emission. The object-based architecture provides an interactive graphical user interface that allows the user to import photospheric magnetic field maps and perform magnetic field extrapolations to almost instantly generate 3D magnetic field models, to investigate the magnetic topology of these models by interactively creating magnetic field lines and associated magnetic flux tubes, to populate the flux tubes with user-defined nonuniform thermal plasma and anisotropic, nonuniform, nonthermal electron distributions; to investigate the spatial and spectral properties of radio and X-ray emission calculated from the model, and to compare the model-derived images and spectra with observational data. The application integrates shared-object libraries containing fast gyrosynchrotron emission codes developed in FORTRAN and C++, soft and hard X-ray codes developed in IDL, a FORTRAN-based potential-field extrapolation routine and an IDL-based linear force free field extrapolation routine. The interactive interface allows users to add any user-defined radiation code that adheres to our interface standards, as well as user-defined magnetic field extrapolation routines. Here we use this tool to analyze a simple single-loop flare and use the model to constrain the 3D structure of the magnetic flaring loop and 3D spatial distribution of the fast electrons inside this loop. We iteratively compute multi-frequency microwave and multi-energy X-ray images from realistic magnetic fluxtubes obtained from an extrapolation of a magnetogram taken prior to the flare, and compare them with imaging data obtained by SDO, NoRH, and RHESSI instruments. We use this event to illustrate use of the tool for general interpretation of solar flares to address disparate problems in solar physics.Comment: 12 pages, 11 figures, ApJ accepte

    Influence of dispersed heat-resistant additives on ignition and combustion of heterogeneous systems

    Get PDF
    The results of experimental studies of the effect of dispersion of heat-resistant additives powders on ignition and combustion of heterogeneous condensed systems. The method of measuring the time delay ignition conductive and radiant heating, and combustion rate at atmospheric pressure. The effect of additives powders of boron, silicon and titanium dioxide on the ignition and combustion of heterogeneous condensed systems

    Radio echo in the turbulent corona and simulations of solar drift-pair radio bursts

    Get PDF
    Drift-pair bursts are an unusual type of solar low-frequency radio emission, which appear in the dynamic spectra as two parallel drifting bright stripes separated in time. Recent imaging spectroscopy observations allowed for the quantitative characterization of the drifting pairs in terms of source size, position, and evolution. Here, the drift-pair parameters are qualitatively analyzed and compared with the newly developed Monte Carlo ray-tracing technique simulating radio-wave propagation in the inhomogeneous anisotropic turbulent solar corona. The results suggest that drift-pair bursts can be formed due to a combination of refraction and scattering processes, with the trailing component being the result of turbulent reflection (turbulent radio echo). The formation of drift-pair bursts requires an anisotropic scattering with the level of plasma density fluctuations comparable to that in type III bursts, but with a stronger anisotropy at the inner turbulence scale. The anisotropic radio-wave scattering model can quantitatively reproduce the key properties of drift-pair bursts: the apparent source size and its increase with time at a given frequency, the parallel motion of the source centroid positions, and the delay between the burst components. The trailing component is found to be virtually cospatial and following the main component. The simulations suggest that drift-pair bursts are likely to be observed closer to the disk center and below 100 MHz due to the effects of free–free absorption and scattering. The exciter of drift pairs is consistent with propagating packets of whistlers, allowing for a fascinating way to diagnose the plasma turbulence and the radio emission mechanism

    X-Ray and Ultraviolet Flares on AT Microscopii Observed by AstroSat

    Full text link
    We present observations of the active M-dwarf binary AT Mic (dM4.5e+dM4.5e) obtained with the orbital observatory AstroSat. During 20 ks of observations, in the far ultraviolet (130180130-180 nm) and soft X-ray (0.370.3-7 keV) spectral ranges, we detected both quiescent emission and at least five flares on different components of the binary. The X-ray flares were typically longer than and delayed (by 565-6 min) with respect to their ultraviolet counterparts, in agreement with the Neupert effect. Using X-ray spectral fits, we have estimated the parameters of the emitting plasma. The results indicate the presence of a hot multi-thermal corona with the average temperatures in the range of 715\sim 7-15 MK and the emission measure of (2.94.5)×1052\sim (2.9-4.5)\times 10^{52} cm3\textrm{cm}^{-3}; both the temperature and the emission measure increased during the flares. The estimated abundance of heavy elements in the corona of AT Mic is considerably lower than at the Sun (0.180.34\sim 0.18-0.34 of the solar photospheric value); the coronal abundance increased during the flares due to chromospheric evaporation. The detected flares had the energies of 10311032\sim 10^{31}-10^{32} erg; the energy-duration relations indicate the presence of magnetic fields stronger than in typical solar flares.Comment: Accepted for publication in Research in Astronomy and Astrophysic

    Microscopic examination of hot spots giving rise to nonlinearity in superconducting resonators

    Get PDF
    We investigate the microscopic origins of nonlinear rf response in superconducting electromagnetic resonators. Strong nonlinearity appearing in the transmission spectra at high input powers manifests itself through the emergence of jumplike features near the resonant frequency that evolve toward lower quality factor with higher insertion loss as the rf input power is increased. We directly relate these characteristics to the dynamics of localized normal regions (hot spots) caused by microscopic features in the superconducting material making up the resonator. A clear observation of hot-spot formation inside a Nb thin film self-resonant structure is presented by employing the microwave laser scanning microscope, and a direct link between microscopic and macroscopic manifestations of nonlinearity is established.Comment: 5 pages, 4 figure
    corecore