We have undertaken a major enhancement of our IDL-based simulation tools
developed earlier for modeling microwave and X-ray emission. The object-based
architecture provides an interactive graphical user interface that allows the
user to import photospheric magnetic field maps and perform magnetic field
extrapolations to almost instantly generate 3D magnetic field models, to
investigate the magnetic topology of these models by interactively creating
magnetic field lines and associated magnetic flux tubes, to populate the flux
tubes with user-defined nonuniform thermal plasma and anisotropic, nonuniform,
nonthermal electron distributions; to investigate the spatial and spectral
properties of radio and X-ray emission calculated from the model, and to
compare the model-derived images and spectra with observational data. The
application integrates shared-object libraries containing fast gyrosynchrotron
emission codes developed in FORTRAN and C++, soft and hard X-ray codes
developed in IDL, a FORTRAN-based potential-field extrapolation routine and an
IDL-based linear force free field extrapolation routine. The interactive
interface allows users to add any user-defined radiation code that adheres to
our interface standards, as well as user-defined magnetic field extrapolation
routines. Here we use this tool to analyze a simple single-loop flare and use
the model to constrain the 3D structure of the magnetic flaring loop and 3D
spatial distribution of the fast electrons inside this loop. We iteratively
compute multi-frequency microwave and multi-energy X-ray images from realistic
magnetic fluxtubes obtained from an extrapolation of a magnetogram taken prior
to the flare, and compare them with imaging data obtained by SDO, NoRH, and
RHESSI instruments. We use this event to illustrate use of the tool for general
interpretation of solar flares to address disparate problems in solar physics.Comment: 12 pages, 11 figures, ApJ accepte