123 research outputs found

    Energy composition of the Universe: time-independent internal symmetry

    Full text link
    The energy composition of the Universe, as emerged from the Type Ia supernova observations and the WMAP data, looks preposterously complex, -- but only at the first glance. In fact, its structure proves to be simple and regular. An analysis in terms of the Friedmann integral enables to recognize a remarkably simple time-independent covariant robust recipe of the cosmic mix: the numerical values of the Friedmann integral for vacuum, dark matter, baryons and radiation are approximately identical. The identity may be treated as a symmetry relation that unifies cosmic energies into a regular set, a quartet, with the Friedmann integral as its common genuine time-independent physical parameter. Such cosmic internal (non-geometrical) symmetry exists whenever cosmic energies themselves exist in nature. It is most natural for a finite Universe suggested by the WMAP data. A link to fundamental theory may be found under the assumption about a special significance of the electroweak energy scale in both particle physics and cosmology. A freeze-out model developed on this basis demonstrates that the physical nature of new symmetry might be due to the interplay between electroweak physics and gravity at the cosmic age of a few picoseconds. The big `hierarchy number' of particle physics represents the interplay in the model. This number quantifies the Friedmann integral and gives also a measure to some other basic cosmological figures and phenomena associated with new symmetry. In this way, cosmic internal symmetry provides a common ground for better understanding of old and recent problems that otherwise seem unrelated; the coincidence of the observed cosmic densities, the flatness of the co-moving space, the initial perturbations and their amplitude, the cosmic entropy are among them.Comment: 32 page

    Gravitational Leptogenesis and Neutrino Mass Limit

    Full text link
    Recently Davoudiasl {\it et al} \cite{steinhardt} have introduced a new type of interaction between the Ricci scalar RR and the baryon current JμJ^{\mu}, μRJμ{\partial_\mu R} J^{\mu} and proposed a mechanism for baryogenesis, the gravitational baryogenesis. Generally, however, μR\partial_{\mu} R vanishes in the radiation dominated era. In this paper we consider a generalized form of their interaction, μf(R)Jμ\partial_{\mu}f(R)J^{\mu} and study again the possibility of gravitational baryo(lepto)genesis. Taking f(R)lnRf(R)\sim \ln R, we will show that μf(R)μR/R\partial_{\mu}f(R)\sim \partial_{\mu} R/R does not vanish and the required baryon number asymmetry can be {\it naturally} generated in the early universe.Comment: 4 page

    Radiative Corrections to Neutrino Mixing and CP Violation in the Minimal Seesaw Model with Leptogenesis

    Full text link
    Radiative corrections to neutrino mixing and CP violation are analyzed in the minimal seesaw model with two heavy right-handed neutrinos. We find that textures of the effective Majorana neutrino mass matrix are essentially stable against renormalization effects. Taking account of the Frampton-Glashow-Yanagida ansatz for the Dirac neutrino Yukawa coupling matrix, we calculate the running effects of light neutrino masses, lepton flavor mixing angles and CP-violating phases for both m1=0m_1 =0 (normal mass hierarchy) and m3=0m_3 =0 (inverted mass hierarchy) cases in the standard model and in its minimal supersymmetric extension. Very instructive predictions for the cosmological baryon number asymmetry via thermal leptogenesis are also given with the help of low-energy neutrino mixing quantities.Comment: 21 pages, 6 figures; more references adde

    Measurement of ϕ\phi(1020) meson leptonic width with CMD-2 detector at VEPP-2M Collider

    Full text link
    The ϕ\phi(1020) meson leptonic width has been determined from the combined analysis of 4 major decay modes of the resonance (ϕK+K,KL0KS0,π+ππ0,ηγ\phi\to K^+ K^-,K^0_LK^0_S,\pi^+\pi^-\pi^0,\eta\gamma) studied with the CMD-2 detector at the VEPP-2M e+ee^+e^- collider. The following value has been obtained: Γ(ϕe+e)=1.235±0.006±0.022\Gamma(\phi\to e^+e^-) = 1.235\pm 0.006\pm 0.022 keV. The ϕ(1020)\phi(1020) meson parameters in four main decay channels have been also recalculated: B(ϕK+K)=0.493±0.003±0.007B(\phi\to K^+K^-) = 0.493\pm 0.003\pm 0.007, B(ϕKLKS)=0.336±0.002±0.006B(\phi\to K_LK_S) = 0.336\pm 0.002\pm 0.006, B(ϕπ+ππ0)=0.155±0.002±0.005B(\phi\to\pi^+\pi^-\pi^0) = 0.155\pm 0.002\pm 0.005, B(ϕηγ)=0.0138±0.0002±0.0002B(\phi\to\eta\gamma) = 0.0138\pm 0.0002\pm 0.0002.Comment: 14 pages, 3 figure

    Study of the radiative decay ϕηγ\phi \to \eta \gamma with CMD-2 detector

    Full text link
    Using the 1.9pb11.9 pb^{-1} of data collected with the CMD-2 detector at VEPP-2M the decay mode ϕηγ\phi \to \eta \gamma, ηπ+ππ0\eta \to \pi^+\pi^-\pi^0 has been studied. The obtained branching ratio is B(ϕηγ)=(1.18±0.03±0.06)\phi \to \eta \gamma) = (1.18 \pm 0.03 \pm 0.06) %.Comment: 13 pages, 5 figures, LaTex2e, to be published in Phys. Lett.

    Observation of KS0K_S^0 semileptonic decays with CMD-2 detector

    Full text link
    The decay KS0πeνK_S^0 \to \pi e \nu has been observed by the CMD-2 detector at the e^+e^- collider VEPP-2M at Novosibirsk. Of 6 million produced KL0KS0K_L^0K_S^0 pairs, 75±1375 \pm 13 events of the KS0πeνK_S^0 \to \pi e \nu decay were selected. The corresponding branching ratio is B(KS0πeν)=(7.2±1.4)×104B(K_S^0 \to \pi e \nu)=(7.2 \pm 1.4)\times10^{-4}. This result is consistent with the evaluation of B(KS0πeν)B(K_S^0 \to \pi e \nu) from the KL0K_L^0 semileptonic rate and KS0K_S^0 lifetime assuming ΔS=ΔQ\Delta S=\Delta Q .Comment: 7 pages, 6 figures, LaTex2e. Submitted to Phys.Lett.

    Measurement of omega meson parameters in pi^+pi^-pi^0 decay mode with CMD-2

    Full text link
    About 11 200 e^+e^- -> omega -> pi^+pi^-pi^0 events selected in the center of mass energy range from 760 to 810 MeV were used for the measurement of the \omega meson parameters. The following results have been obtained: sigma _{0}=(1457 \pm 23 \pm 19)nb, m_{\omega}=(782.71 \pm 0.07 \pm 0.04) MeV/c^{2}, \Gamma_{\omega}=(8.68 \pm 0.23 \pm 0.10) MeV, \Gamma_{e^+e^-}\cdot Br (\omega -> pi^+pi^-pi^0)= (0.528 \pm 0.012 \pm 0.007) \cdot 10^{-3} MeV.Comment: 8 pages, 4 figure
    corecore