232 research outputs found

    Theoretical investigation of TbNi_{5-x}Cu_x optical properties

    Full text link
    In this paper we present theoretical investigation of optical conductivity for intermetallic TbNi_{5-x}Cu_x series. In the frame of LSDA+U calculations electronic structure for x=0,1,2 and on top of that optical conductivities were calculated. Disorder effects of Ni for Cu substitution on a level of LSDA+U densities of states (DOS) were taken into account via averaging over all possible Cu ion positions for given doping level x. Gradual suppression and loosing of structure of optical conductivity at 2 eV together with simultaneous intensity growth at 4 eV correspond to increase of Cu and decrease of Ni content. As reported before [Knyazev et al., Optics and Spectroscopy 104, 360 (2008)] plasma frequency has non monotonic doping behaviour with maximum at x=1. This behaviour is explained as competition between lowering of total density of states on the Fermi level N(E_F) and growing of number of carriers. Our theoretical results agree well with variety of recent experiments.Comment: 4 pages, 3 figure

    Microscopic Calculation of Total Ordinary Muon Capture Rates for Medium - Weight and Heavy Nuclei

    Full text link
    Total Ordinary Muon Capture (OMC) rates are calculated on the basis of the Quasiparticle Random Phase Approximation for several spherical nuclei from 90^Zr to 208^Pb. It is shown that total OMC rates calculated with the free value of the axial-vector coupling constant g_A agree well with the experimental data for medium-size nuclei and exceed considerably the experimental rates for heavy nuclei. The sensitivity of theoretical OMC rates to the nuclear residual interactions is discussed.Comment: 27 pages and 3 figure

    Excitonic ordering in strongly correlated spin crossover systems: induced magnetism and excitonic excitation spectrum

    Full text link
    The effects associated with interatomic hoppings of excitons and the excitonic Bose condensate formation in the strongly correlated spin crossover systems are considered in the framework of the effective Hamiltonian for the two-band Kanamori model. The appearance of antiferromagnetic ordering due to the exciton order is found even in the absence of interatomic exchange interaction. The spectrum of excitonic excitations is calculated at various points of the "temperature vs. crystal field" phase diagram. Outside the region of exciton ordering, the spectrum has a gap, which vanishes at the boundary of the exciton condensate phase. The non-uniform spectral weight distribution over the Brillouin zone is found. The role of electron-phonon interaction is discussed as well.Comment: 10 pages, 10 figure

    Shell-Model Effective Operators for Muon Capture in ^{20}Ne

    Get PDF
    It has been proposed that the discrepancy between the partially-conserved axial-current prediction and the nuclear shell-model calculations of the ratio CP/CAC_P/C_A in the muon-capture reactions can be solved in the case of ^{28}Si by introducing effective transition operators. Recently there has been experimental interest in measuring the needed angular correlations also in ^{20}Ne. Inspired by this, we have performed a shell-model analysis employing effective transition operators in the shell-model formalism for the transition 20Ne(0g.s.+)+μ20F(1+;1.057MeV)+νμ^{20}Ne(0^+_{g.s.})+\mu^- \to ^{20}F(1^+; 1.057 MeV) + \nu_\mu. Comparison of the calculated capture rates with existing data supports the use of effective transition operators. Based on our calculations, as soon as the experimental anisotropy data becomes available, the limits for the ratio CP/CAC_P/ C_A can be extracted.Comment: 9 pages, 3 figures include

    Thermomagnetic analysis of native iron from the upper sedimentary horizons of Lake Baikal, section GC-99 (Posolskaya Bank)

    Get PDF
    © 2017 We present results of a thermomagnetic analysis of Late Pleistocene-Holocene bottom sediments from the gravity core GC-99 of the borehole BDP-99 drilled at Posolskaya Bank of Lake Baikal in the framework of the Baikal Drilling Project. The results are compared with the earlier analytical data on the samples from the lower (Miocene) section of the BDP-98 drilled on the Akademichesky Ridge. Native-iron particles were found in only 14 of 61 samples. Their content varies from ~ 10 -5 to 10 -4 %, and their distribution is near-bimodal, with a distinct “zero” mode. The results of the thermomagnetic analysis are confirmed by a probe microanalysis: Only occasional native-iron particles were found. Nickel was detected in only one sample. The samples have a large number of magnetite and titanomagnetite grains. It is shown that the distribution of native-iron particles in the Baikal sediments depends on the rate of sedimentation: The rate increase is accompanied by the increase in the number of the “zero” group samples (free of iron particles). The conclusion is drawn that the native-iron particles in the studied sediments are predominantly of cosmic origin

    Thermomagnetic analysis of native iron from the upper sedimentary horizons of Lake Baikal, section GC-99 (Posolskaya Bank)

    Get PDF
    © 2017 We present results of a thermomagnetic analysis of Late Pleistocene-Holocene bottom sediments from the gravity core GC-99 of the borehole BDP-99 drilled at Posolskaya Bank of Lake Baikal in the framework of the Baikal Drilling Project. The results are compared with the earlier analytical data on the samples from the lower (Miocene) section of the BDP-98 drilled on the Akademichesky Ridge. Native-iron particles were found in only 14 of 61 samples. Their content varies from ~ 10 -5 to 10 -4 %, and their distribution is near-bimodal, with a distinct “zero” mode. The results of the thermomagnetic analysis are confirmed by a probe microanalysis: Only occasional native-iron particles were found. Nickel was detected in only one sample. The samples have a large number of magnetite and titanomagnetite grains. It is shown that the distribution of native-iron particles in the Baikal sediments depends on the rate of sedimentation: The rate increase is accompanied by the increase in the number of the “zero” group samples (free of iron particles). The conclusion is drawn that the native-iron particles in the studied sediments are predominantly of cosmic origin

    Measurement of the Solar Neutrino Capture Rate by the Russian-American Gallium Solar Neutrino Experiment During One Half of the 22-Year Cycle of Solar Activity

    Full text link
    We present the results of measurements of the solar neutrino capture rate in gallium metal by the Russian-American Gallium Experiment SAGE during slightly more than half of a 22-year cycle of solar activity. Combined analysis of the data of 92 runs during the 12-year period January 1990 through December 2001 gives a capture rate of solar neutrinos with energy more than 233 keV of 70.8 +5.3/-5.2 (stat.) +3.7/-3.2 (syst.) SNU. This represents only slightly more than half of the predicted standard solar model rate of 128 SNU. We give the results of new runs beginning in April 1998 and the results of combined analysis of all runs since 1990 during yearly, monthly, and bimonthly periods. Using a simple analysis of the SAGE results combined with those from all other solar neutrino experiments, we estimate the electron neutrino pp flux that reaches the Earth to be (4.6 +/- 1.1) E10/(cm^2-s). Assuming that neutrinos oscillate to active flavors the pp neutrino flux emitted in the solar fusion reaction is approximately (7.7 +/- 1.8) E10/(cm^2-s), in agreement with the standard solar model calculation of (5.95 +/- 0.06) E10/(cm^2-s).Comment: English translation of article submitted to Russian journal Zh. Eksp. Teor. Fiz. (JETP); 12 pages, 5 figures. V2: Added winter-summer difference and 2 reference

    Computational assessment of environmental hazards of nitroaromatic compounds: influence of the type and position of aromatic ring substituents on toxicity

    Get PDF
    This study summarizes the results of our recent QSAR and QSPR investigations on prediction of numerous aspects of environmental behavior of nitro compounds. In this study, we applied the QSAR/QSPR models previously developed by our group for virtual screening of energetic compounds, their precursors and other compounds containing nitro groups. To make predictions on the environmental impact of nitro compounds, we analyzed the trends in the change of the experimentally obtained and QSAR/QSPR-predicted values of aqueous solubility, lipophilicity, Ames mutagenicity, bioavailability, blood–brain barrier penetration, aquatic toxicity on T. pyriformis and acute oral toxicity on rats as a function of chemical structure of nitro compounds. All the models were developed using simplex descriptors in combination with random forest (RF) modeling techniques. We interpreted the possible environmental impact (different toxicological properties) in terms of dividing considered nitro compounds based on hydrophobic and hydrophilic characteristics and in terms of the influence of their molecular fragments that promote and interfere with toxicity. In particular, we found that, in general, the presence of amide or tertiary amine groups leads to an increase in toxicity. Also, it was predicted that compounds containing a NO2 group in the para-position of a benzene ring are more toxic than meta-isomers, which, in turn, are more toxic than ortho-isomers. In general, we concluded that hydrophobic nitroaromatic compounds, especially the ones with electron-accepting substituents, halogens and amino groups, are the most environmentally hazardous
    corecore