83 research outputs found

    Conservation of Gene Order and Content in the Circular Chromosomes of ‘Candidatus Liberibacter asiaticus’ and Other Rhizobiales

    Get PDF
    ‘Ca. Liberibacter asiaticus,’ an insect-vectored, obligate intracellular bacterium associated with citrus-greening disease, also called “HLB," is a member of the Rhizobiales along with nitrogen-fixing microsymbionts Sinorhizobium meliloti and Bradyrhizobium japonicum, plant pathogen Agrobacterium tumefaciens and facultative intracellular mammalian pathogen Bartonella henselae. Comparative analyses of their circular chromosomes identified 514 orthologous genes shared among all five species. Shared among all five species are 50 identical blocks of microsyntenous orthologous genes (MOGs), containing a total of 283 genes. While retaining highly conserved genomic blocks of microsynteny, divergent evolution, horizontal gene transfer and niche specialization have disrupted macrosynteny among the five circular chromosomes compared. Highly conserved microsyntenous gene clusters help define the Rhizobiales, an order previously defined by 16S RNA gene similarity and herein represented by the three families: Bartonellaceae, Bradyrhizobiaceae and Rhizobiaceae. Genes without orthologs in the other four species help define individual species. The circular chromosomes of each of the five Rhizobiales species examined had genes lacking orthologs in the other four species. For example, 63 proteins are encoded by genes of ‘Ca. Liberibacter asiaticus’ not shared with other members of the Rhizobiales. Of these 63 proteins, 17 have predicted functions related to DNA replication or RNA transcription, and some of these may have roles related to low genomic GC content. An additional 17 proteins have predicted functions relevant to cellular processes, particularly modifications of the cell surface. Seventeen unshared proteins have specific metabolic functions including a pathway to synthesize cholesterol encoded by a seven-gene operon. The remaining 12 proteins encoded by ‘Ca. Liberibacter asiaticus’ genes not shared with other Rhizobiales are of bacteriophage origin. ‘Ca. Liberibacter asiaticus’ shares 11 genes with only Sinorhizobium meliloti and 12 genes are shared with only Bartonella henselae

    Comparison of the ‘Ca. Liberibacter asiaticus’ Genome Adapted for an Intracellular Lifestyle with Other Members of the Rhizobiales

    Get PDF
    An intracellular plant pathogen ‘Candidatus Liberibacter asiaticus,’ a member of the Rhizobiales, is related to Sinorhizobium meliloti, Bradyrhizobium japonicum, nitrogen fixing endosymbionts, Agrobacterium tumefaciens, a plant pathogen, and Bartonella henselae, an intracellular mammalian pathogen. Whole chromosome comparisons identified at least 50 clusters of conserved orthologous genes found on the chromosomes of all five metabolically diverse species. The intracellular pathogens ‘Ca. Liberibacter asiaticus’ and Bartonella henselae have genomes drastically reduced in gene content and size as well as a relatively low content of guanine and cytosine. Codon and amino acid preferences that emphasize low guanosine and cytosine usage are globally employed in these genomes, including within regions of microsynteny and within signature sequences of orthologous proteins. The length of orthologous proteins is generally conserved, but not their isoelectric points, consistent with extensive amino acid substitutions to accommodate selection for low GC content. The ‘Ca. Liberibacter asiaticus’ genome apparently has all of the genes required for DNA replication present in Sinorhizobium meliloti except it has only two, rather than three RNaseH genes. The gene set required for DNA repair has only one rather than ten DNA ligases found in Sinorhizobium meliloti, and the DNA PolI of ‘Ca. Liberibacter asiaticus’ lacks domains needed for excision repair. Thus the ability of ‘Ca. Liberibacter asiaticus’ to repair mutations in its genome may be impaired. Both ‘Ca. Liberibacter asiaticus and Bartonella henselae lack enzymes needed for the metabolism of purines and pyrimidines, which must therefore be obtained from the host. The ‘Ca. Liberibacter asiaticus’ genome also has a greatly reduced set of sigma factors used to control transcription, and lacks sigma factors 24, 28 and 38. The ‘Ca. Liberibacter asiaticus’ genome has all of the hallmarks of a reduced genome of a pathogen adapted to an intracellular lifestyle

    Desulfotomaculum varum sp. nov., a moderately thermophilic sulfate-reducing bacterium isolated from a microbial mat colonizing a Great Artesian Basin bore well runoff channel

    Get PDF
    A strictly anaerobic moderately thermophilic bacterium, designated strain RH04-3T (T = type strain), was isolated from a red colored microbial mat that colonizes a Great Artesian Basin (GAB) bore well (Registered Number 17263) runoff channel at 66 °C. The cells of strain RH04-3T were straight to slightly curved, sporulating, Gram-positive rods (2.0–5.0 × 1.0 μm) that grew optimally at 50 °C (temperature growth range between 37 and 55 °C) and at pH 7 (pH growth range of 5.0 and 8.5). Growth was inhibited by NaCl concentrations ≥1.5% (w/v), and by chloramphenicol, streptomycin, tetracycline, penicillin and ampicillin. The strain utilized fructose, mannose, glycerol, lactate, pyruvate and H2 in the presence of sulfate, and fermented pyruvate in the absence of sulfate. Strain RH04-3T reduced sulfate, sulfite, thiosulfate and elemental sulfur, but not nitrate, nitrite, iron(III), arsenate(V), vanadium(V) or cobalt(III) as terminal electron acceptors. The G + C content of DNA was 52.4 ± 0.8 mol % as determined by the thermal denaturation (Tm) method. 16S rRNA sequence analysis indicated that strain RH04-3T was a member of the genus Desulfotomaculum and was most closely related to Desulfotomaculum putei (similarity value of 95.2%) and Desulfotomaculum hydrothermale (similarity value of 93.6%). On the basis of phylogenetic and phenotypic characteristics, strain RH04-3T is considered to represent a novel species of the genus Desulfotomaculum, for which the name Desulfotomaculum varum sp. nov. is proposed. The type strain RH04-3T = JCM 16158T = KCTC 5794T

    In Situ Identification of Plant-Invasive Bacteria with MALDI-TOF Mass Spectrometry

    Get PDF
    Rhizobia form a disparate collection of soil bacteria capable of reducing atmospheric nitrogen in symbiosis with legumes. The study of rhizobial populations in nature involves the collection of large numbers of nodules found on roots or stems of legumes, and the subsequent typing of nodule bacteria. To avoid the time-consuming steps of isolating and cultivating nodule bacteria prior to genotyping, a protocol of strain identification based on the comparison of MALDI-TOF MS spectra was established. In this procedure, plant nodules were considered as natural bioreactors that amplify clonal populations of nitrogen-fixing bacteroids. Following a simple isolation procedure, bacteroids were fingerprinted by analysing biomarker cellular proteins of 3 to 13 kDa using Matrix Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) mass spectrometry. In total, bacteroids of more than 1,200 nodules collected from roots of three legumes of the Phaseoleae tribe (cowpea, soybean or siratro) were examined. Plants were inoculated with pure cultures of a slow-growing Bradyrhizobium japonicum strain G49, or either of two closely related and fast-growing Sinorhizobium fredii strains NGR234 and USDA257, or with mixed inoculants. In the fully automatic mode, correct identification of bacteroids was obtained for >97% of the nodules, and reached 100% with a minimal manual input in processing of spectra. These results showed that MALDI-TOF MS is a powerful tool for the identification of intracellular bacteria taken directly from plant tissues

    Streptomyces aridus sp. nov., isolated from a high altitude Atacama Desert soil and emended description of Streptomyces noboritoensis Isono et al. 1957.

    Get PDF
    A polyphasic study was undertaken to determine the taxonomic status of a Streptomyces strain which had been isolated from a high altitude Atacama Desert soil and shown to have bioactive properties. The strain, isolate H9(T), was found to have chemotaxonomic, cultural and morphological properties that place it in the genus Streptomyces. 16S rRNA gene sequence analyses showed that the isolate forms a distinct branch at the periphery of a well-delineated subclade in the Streptomyces 16S rRNA gene tree together with the type strains of Streptomyces crystallinus, Streptomyces melanogenes and Streptomyces noboritoensis. Multi-locus sequence analysis (MLSA) based on five house-keeping gene alleles showed that isolate H9(T) is closely related to the latter two type strains and to Streptomyces polyantibioticus NRRL B-24448(T). The isolate was distinguished readily from the type strains of S. melanogenes, S. noboritoensis and S. polyantibioticus using a combination of phenotypic properties. Consequently, the isolate is considered to represent a new species of Streptomyces for which the name Streptomyces aridus sp. nov. is proposed; the type strain is H9(T) (=NCIMB 14965(T)=NRRL B65268(T)). In addition, the MLSA and phenotypic data show that the S. melanogenes and S. noboritoensis type strains belong to a single species, it is proposed that S. melanogenes be recognised as a heterotypic synonym of S. noboritoensis for which an emended description is given. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10482-017-0838-2) contains supplementary material, which is available to authorized users
    corecore