7 research outputs found

    Genetic architecture of rainbow trout survival from egg to adult

    Get PDF
    Survival from birth to a reproductive adult is a challenge that only robust individuals resistant to a variety of mortality factors will overcome. To assess whether survival traits share genetic architecture throughout the life cycle, we estimated genetic correlations for survival within fingerling stage, and across egg, fingerling and grow-out stages in farmed rainbow trout. Genetic parameters of survival at three life cycle stages were estimated for 249 166 individuals originating from ten year classes of a pedigreed population. Despite being an important fitness component, survival traits harboured significant but modest amount of genetic variation (h2=0·07–0·27). Weak associations between survival during egg-fry and fingerling periods, between early and late fingerling periods (rG=0·30) and generally low genetic correlations between fingerling and grow-out survival (mean rG=0·06) suggested that life-stage specific survival traits are best regarded as separate traits. However, in the sub-set of data with detailed time of death records, positive genetic correlations between early and late fingerling survival (rG=0·89) showed that during certain years the best genotypes in the early period were also among the best in the late period. That survival across fingerling period can be genetically the same, trait was indicated also by only slightly higher heritability (h2=0·15) estimated with the survival analysis of time to death during fingerling period compared to the analysis treating fingerling survival as a binary character (h2=0·11). The results imply that (1) inherited resistance against unknown mortality factors exists, but (2) ranking of genotypes changes across life stages

    Effectiveness analysis of resistance and tolerance to infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tolerance and resistance provide animals with two distinct strategies to fight infectious pathogens and may exhibit different evolutionary dynamics. However, few studies have investigated these mechanisms in the case of animal diseases under commercial constraints.</p> <p>Methods</p> <p>The paper proposes a method to simultaneously describe (1) the dynamics of transmission of a contagious pathogen between animals, (2) the growth and death of the pathogen within infected hosts and (3) the effects on their performances. The effectiveness of increasing individual levels of tolerance and resistance is evaluated by the number of infected animals and the performance at the population level.</p> <p>Results</p> <p>The model is applied to a particular set of parameters and different combinations of values. Given these imputed values, it is shown that higher levels of individual tolerance should be more effective than increased levels of resistance in commercial populations. As a practical example, a method is proposed to measure levels of animal tolerance to bovine mastitis.</p> <p>Conclusions</p> <p>The model provides a general framework and some tools to maximize health and performances of a population under infection. Limits and assumptions of the model are clearly identified so it can be improved for different epidemiological settings.</p

    Genetics of Microenvironmental Sensitivity of Body Weight in Rainbow Trout (Oncorhynchus mykiss) Selected for Improved Growth

    Get PDF
    Microenvironmental sensitivity of a genotype refers to the ability to buffer against non-specific environmental factors, and it can be quantified by the amount of residual variation in a trait expressed by the genotype’s offspring within a (macro)environment. Due to the high degree of polymorphism in behavioral, growth and life-history traits, both farmed and wild salmonids are highly susceptible to microenvironmental variation, yet the heritable basis of this characteristic remains unknown. We estimated the genetic (co)variance of body weight and its residual variation in 2-year-old rainbow trout (Oncorhynchus mykiss) using a multigenerational data of 45,900 individuals from the Finnish national breeding programme. We also tested whether or not microenvironmental sensitivity has been changed as a correlated genetic response when genetic improvement for growth has been practiced over five generations. The animal model analysis revealed the presence of genetic heterogeneity both in body weight and its residual variation. Heritability of residual variation was remarkably lower (0.02) than that for body weight (0.35). However, genetic coefficient of variation was notable in both body weight (14%) and its residual variation (37%), suggesting a substantial potential for selection responses in both traits. Furthermore, a significant negative genetic correlation (−0.16) was found between body weight and its residual variation, i.e., rapidly growing genotypes are also more tolerant to perturbations in microenvironment. The genetic trends showed that fish growth was successfully increased by selective breeding (an average of 6% per generation), whereas no genetic change occurred in residual variation during the same period. The results imply that genetic improvement for body weight does not cause a concomitant increase in microenvironmental sensitivity. For commercial production, however, there may be high potential to simultaneously improve weight gain and increase its uniformity if both criteria are included in a selection index
    corecore