26 research outputs found
Silicon-Organic Hybrid (SOH) Mach-Zehnder Modulators for 100 Gbit/s On-Off Keying
Electro-optic modulators for high-speed on-off keying (OOK) are key
components of short- and mediumreach interconnects in data-center networks.
Besides small footprint and cost-efficient large-scale production, small drive
voltages and ultra-low power consumption are of paramount importance for such
devices. Here we demonstrate that the concept of silicon-organic hybrid (SOH)
integration is perfectly suited for meeting these challenges. The approach
combines the unique processing advantages of large-scale silicon photonics with
unrivalled electro-optic (EO) coefficients obtained by molecular engineering of
organic materials. In our proof-of-concept experiments, we demonstrate
generation and transmission of OOK signals with line rates of up to 100 Gbit/s
using a 1.1 mm-long SOH Mach-Zehnder modulator (MZM) which features a
{\pi}-voltage of only 0.9 V. This experiment represents not only the first
demonstration of 100 Gbit/s OOK on the silicon photonic platform, but also
leads to the lowest drive voltage and energy consumption ever demonstrated at
this data rate for a semiconductor-based device. We support our experimental
results by a theoretical analysis and show that the nonlinear transfer
characteristic of the MZM can be exploited to overcome bandwidth limitations of
the modulator and of the electric driver circuitry. The devices are fabricated
in a commercial silicon photonics line and can hence be combined with the full
portfolio of standard silicon photonic devices. We expect that high-speed
power-efficient SOH modulators may have transformative impact on short-reach
optical networks, enabling compact transceivers with unprecedented energy
efficiency that will be at the heart of future Ethernet interfaces at Tbit/s
data rates
Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) integration
Silicon photonics offers tremendous potential for inexpensive high-yield photonic-electronic integration. Besides conventional dielectric waveguides, plasmonic structures can also be efficiently realized on the silicon photonic platform, reducing device footprint by more than an order of magnitude. However, nei-ther silicon nor metals exhibit appreciable second-order optical nonlinearities, thereby making efficient electro-optic modulators challenging to realize. These deficiencies can be overcome by the concepts of silicon-organic hybrid (SOH) and plasmonic-organic hybrid integration, which combine SOI waveguides and plasmonic nanostructures with organic electro-optic cladding materials
Nanophotonic modulators and photodetectors using silicon photonic and plasmonic device concepts
Nanophotonic modulators and photodetectors are key building blocks for high-speed optical interconnects in datacom and telecom networks. Besides power efficiency and high electro-optic bandwidth, ultra-compact footprint and scalable co-integration with electronic circuitry are indispensable for highly scalable communication systems. In this paper, we give an overview on our recent progress in exploring nanophotonic modulators and photodetectors that combine the specific strengths of silicon photonic and plasmonic device concepts with hybrid integration approaches. Our work comprises electro-optic modulators that exploit silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration to enable unprecedented energy efficiency and transmission speed, as well as waveguide-based plasmonic internal photo-emission detectors (PIPED) with record-high sensitivities and bandwidths
Silicon-organic hybrid (SOH) modulators for intensity-modulation / direct-detection links with line rates of up to 120 Gbit/s
High-speed interconnects in data-center and campus-area networks crucially rely on efficient and technically simple transmission techniques that use intensity modulation and direct detection (IM/DD) to bridge distances of up to a few kilometers. This requires electro-optic modulators that combine low operation voltages with large modulation bandwidth and that can be operated at high symbol rates using integrated drive circuits. Here we explore the potential of silicon-organic hybrid (SOH) Mach-Zehnder modulators (MZM) for generating high-speed IM/DD signals at line rates of up to 120 Gbit/s. Using a SiGe BiCMOS signal-conditioning chip, we demonstrate that intensity-modulated duobinary (IDB) signaling allows to efficiently use the electrical bandwidth, thereby enabling line rates of up to 100 Gbit/s at bit error ratios (BER) of 8.5 x 10(-5). This is the highest data rate achieved so far using a silicon-based MZM in combination with a dedicated signal-conditioning integrated circuit (IC). We further show four-level pulse-amplitude modulation (PAM4) at lines rates of up to 120 Gbit/s (BER = 3.2 x 10(-3)) using a high-speed arbitrary-waveform generator and a 0.5 mm long MZM. This is the highest data rate hitherto achieved with a sub-millimeter MZM on the silicon photonic platform. (C) 2017 Optical Society of Americ
100 Gbit/s serial transmission using a silicon-organic hybrid (SOH) modulator and a duobinary driver IC
100 Gbit/s three-level (50 Gbit/s 00K) signals are generated using a silicon-organic hybrid modulator and a BiCMOS duobinary driver IC at a BER of 8.5x10(-5)(<10(-12)). We demonstrate dispersion-compensated transmission over 5 km
Capacitively Coupled Silicon-Organic Hybrid Modulator for 200 Gbit/s PAM-4 Signaling
We demonstrate capacitively coupled silicon-organic hybrid (SOH) modulator with a π-voltage-length product of 1.3 V mm and 3 dB EO bandwidth exceeding 65 GHz. The modulator is used for 200 Gbit/s (100 GBd) PAM-4 signaling