289 research outputs found

    Energy transfer from organic surface adsorbate-polyvinyl pyrrolidone molecules to luminescent centers

    Get PDF
    Abstract Multi-colour emitting doped ZnS nanocrystals surface capped with pyridine (P-ZnS) or polyvinyl pyrrolidone (PVP-ZnS) have been synthesized by wet chemical methods. The photoluminescence studies show that the dopant related emission from P-ZnS nanocrystals are caused by the energy transfer from band-to-band excitation of the host lattice. However, in the case of PVP capped ZnS, considerable enhancement in the emission intensity was observed and the corresponding excitation spectra appeared dramatically broadened due to the presence of multiple excitation bands with peak maxima at 235, 253, 260, 275, and 310 nm. The bands from 235 to 275 nm are assigned to the electronic transitions in the chemisorbed PVP molecules whereas the excitation maximum around 310 nm corresponds to the band-to-band transition within the nanocrystalline ZnS host. The presence of PVP related energy bands in the excitation spectrum indicates the process of energy transfer from the surface adsorbed PVP molecules to dopant centers in ZnS nanocrystals. This study brings out a heterogeneous sensitizer-activator relation between organic surface adsorbate and doped semiconducting nanocrystals.

    Flares on AM Canum Venaticorum

    Get PDF
    AM CVn, an interacting binary system consisting of two helium white dwarfs, has been classified as a nova-like object. Normally it exhibits only small amplitude modulations of 0.05 mag with a 1051 s periodicity. The authors report what is believed to be for the first time, two unusually intense optical flares in AM CVn during 1985-87. The characteristics of the two flares in white light observed on 1985 February 24 and 1986 February 7 with Δm=0.34 and Δm=1.07 respectively are described. The authors estimate the maximum amount of energy released from these flares as 2.7×1036 erg and suggest in the light of current models possible sites of origin of the flaring activity

    Pricing reverse mortgages in Spain

    Full text link
    [EN] In Spain, as in other European countries, the continuous ageing of the population creates a need for long-term care services and their financing. However, in Spain the development of this kind of services is still embryonic. The aim of this article is to obtain a calculation method for reverse mortgages in Spain based on the fit and projection of dynamic tables for Spanish mortality, using the Lee and Carter model. Mortality and life expectancy for the next 20 years are predicted using the fitted model, and confidence intervals are obtained from the prediction errors of parameters for the mortality index of the model. The last part of the article illustrates an application of the results to calculate the reverse mortgage model promoted by the Spanish Instituto de Crédito Oficial (Spanish State Financial Agency), for which the authors have developed a computer application.The authors are indebted to Jose Garrido, whose suggestions improved the original manuscript, and to the anonymous referee for his/her valuable comments. This work was partially supported by grants from the MEyC (Ministerio de Educacio´n y Ciencia, Spain), projects MTM2010- 14961 and MTM2008-05152.Debón Aucejo, AM.; Montes, F.; Sala, R. (2013). Pricing reverse mortgages in Spain. European Actuarial Journal. 3:23-43. https://doi.org/10.1007/s13385-013-0071-yS23433Blay-Berrueta D (2007) Sistemas de cofinaciaciación de la dependencia: seguro privado frente a hipoteca inversa. Cuadernos de la Fundación, Fundación Mapfre Estudios, Madrid.Booth H (2006) Demographic forecasting: 1980 to 2005 in review. Int J Forecast 22(3):547–582Booth H, Hyndman R, Tickle L, de Jong P (2006) Lee–Carter mortality forecasting: a multi-country comparison of variants and extensions. Demogr Res 15(9):289–310Booth H, Maindonald J, Smith L (2002) Applying Lee–Carter under conditions of variable mortality decline. Popul Stud 56(3):325–336Booth H, Tickle L (2003) The future aged: new projections of Australia’s ederly population. Popul Stud 22(4):38–44Brouhns N, Denuit M, Keilegom IV (2005) Bootstrapping Poisson log-bilinear model for mortality forecasting. Scand Actuar J 2005(3):212–224Brouhns N, Denuit M, Vermunt J (2002) A Poisson log-bilinear regression approach to the construction of projected lifetables. Insur Math Econ 31(3):373–393Carter L, Lee R (1992) Modeling and forecasting US sex differentials in mortality. Int J Forecast 8(3):393–411Carter L, Prkawetz A (2001) Examining structural shifs in mortality using the Lee–Carter method. Mpidr wp 2001–2007, Center for Demography and Ecology Information, University of Wisconsin-Madison.Chinloy P, Megbolugbe I (1994) Reverse mortgages: contracting and crossover. J Am Real Estate Urban Econ Assoc 22(2):367–386Coale A, Guo G (1989) Revisited regional model life tables at very low levels of mortality. Popul Index 55:613–643Coale A, Kisker E (1990) Defects in data old age mortality in the United States: New procedures for calculating approximately accurate mortality schedules and lifes tables at the highest ages. Asian Pac Popul Forum 4:1–31Cossette H, Delwarde A, Denuit M, Guillot F, Étienne M (2007) Pension plan valuation and mortality projection: a case study with mortality data. N Am Actuar J 11(2):1–34.Costa-Font J (2009) Ageing in place? exploring elderly people’s housing preferences in Spain. Urban Stud 46(2):295–316Costa-Font J (2013) Housing-related well-being in older people: the impact of environmental and financial influences. Urban Stud 50(4):657–673Currie I, Kirkby J, Durban M, Eilers P (2004) Smooth Lee–Carter models and beyond. In: Workshop on Lee–Carter Methods, http://www.ma.hw.ac.uk/~iain/workshop/workshop.html . Accessed 4 Mar 2005Czado C, Delwarde A, Denuit M (2005) Bayesian Poisson log-bilinear mortality projections. Insur Math Econ 36(3):260–284D’Amato V, Haberman S, Piscopo G, Russolillo M (2012) Modelling dependent data for longevity projections. Insur Math Econ 51(3):694–701Davidoff T (2012) Can ‘high costs’ justify weak demand for the home equity conversion mortgage? Technical report, available at SSRNDavidoff T, Welke G (2007) Selection and moral hazard in the reverse mortgage market. Technical report, Haas School of Business, UC BerkeleyDebón A, Montes F, Mateu J, Porcu E, Bevilacqua M (2008) Modelling residuals dependence in dymanic life tables. Comput Stat Data Anal 52(3):3128–3147Debón A, Montes F, Puig F (2008) Modelling and forecasting mortality in Spain. Eur J Oper Res 189(3):624–637Debón A, Montes F, Sala R (2009) Tablas de mortalidad dinámicas. Una aplicación a la hipoteca inversa en España. Fundación ICO. Publicaciones de la Universitat de Valéncia, ValenciaDebón A, Montes F, Martínez-Ruiz F (2011) Statistical methods to compare mortality for a group with non-divergent populations: an application to Spanish regions. Eur Actuar J 1:291–308Delwarde A, Denuit M, Eilers P (2007) Smoothing the Lee–Carter and poisson log-bilinear models for mortality forecasting: a penalized log-likelihood approach. Stat Modell 7(1):29–48Denuit M (2007) Distribution of the random future life expectancies in log-bilinear mortality projections models. Lifetime Data Anal 13(3):381–397Denuit M, Goderniaux A (2004) Closing and projecting lifetables using log-linear models. Mitteilungen. der Schweizerischen Aktuarvereingung 1:29–49Felipe A, Guillén M, Pérez-Marín A (2002) Recent mortality trends in the Spanish population. Br Actuar J 8(4):757–786.Forfar D, McCutcheon J, Wilkie A (1988) On graduation by mathematical formula. J Inst Actuar 115(459):1–149Guillen M, Vidiella-i-Anguera A (2005) Forecasting Spanish natural life expectancy. Risk Anal 25(5):1161–1170Heligman L, Pollard J (1980) The age pattern of mortality. J Inst Actuar 107:49–80Herranz-Gonzalez R (2006) Hipoteca inversa y figuras afines. Informes Portal Mayores 49, IMSERSO, Madrid, http://www.imsersomayores.csic.es/documentos/documentos/herranz-hipoteca-01.pdfHoriuchi S, Wilmoth J (1998) Decelaration in the age pattern of mortality at older ages. Demography 35:391–412Hyndman RJ (2008) Forecast: forecasting functions for time series. R package version 1.11Koissi M, Shapiro A, Hgns G (2006) Evaluating and extending the Lee–Carter model for mortality forecasting confidence interval. Insur Math Econ 38(1):1–20Kutty N (1998) The scope for poverty alleviation among elderly home-owners in the United States through reverse mortgages. Urban Stud 35(1):113–129Lee R (2000) The Lee–Carter method for forecasting mortality, with various extensions and applications. N Am Actuar J 4(1):80–91Lee R, Carter L (1992) Modelling and forecasting US mortality. J Am Stat Assoc 87(419):659–671Lee R, Nault F (1993) Modeling and forecasting provincial mortality in Canada. Montreal world congress of the International Union for Scientific Study of PopulationLee R, Rofman R (1994) Modelación y Proyección de la mortalidad en Chile. Notas Poblacin 22(59):182–213Li N, Lee R (2005) Coherent mortality forecast for a group of populations: an extension of the Lee–Carter method. Demography 42(3):575–593Li S-H, Hardy M, Tan K (2009) Uncertainty in mortality forecasting: an extensin to the classical Lee–Carter approach. Astin Bull 31:137–164Lindbergson M (2001) Mortality among the elderly in Sweden. Scan Actuar J 1:79–94Liu X, Braun WJ (2010) Investigating mortality uncertainty using the block bootstrap. J Probab Stat 2010:385–399McNown R, Rogers A (1989) Forecasting mortality: a parametrized time series aproach. Demography 26(4):645–660McNown R, Rogers A (1992) Forecasting cause-specific mortality using time series methods. Int J Forecast 8(3):413–432Miceli T, Sirmans C (1994) Reverse mortgages and borrower maintenance risk. J Am Real Estate Urban Econ Assoc 22(2):433–450Pedroza C (2006) A bayesian forecasting model: predicting US male mortality. Biostatistics 7(4):530–550Renshaw A, Haberman S (2003) Lee–Carter mortality forecasting: a parallel generalized linear modelling aproach for England and Wales mortality projections. J R Stat Soc C 52(1):119–137Renshaw A, Haberman S (2003) Lee–Carter mortality forecasting with age specific enhancement. Insur Math Econ 33(2):255–272Renshaw A, Haberman S (2003) On the forecasting of mortality reduction factors. Insur Math Econ 32(3):379–401Renshaw A, Haberman S (2006) A cohort-based extension to the Lee–Carter model for mortality reduction factors. Insur Math Econ 38(3):556–570Renshaw A, Haberman S (2008) On simulation-based approaches to risk measurement in mortality with specific reference to poisson Lee–Carter modelling. Insur Math Econ 42(2):797–816Shiller R, Weiss A (2000) Moral hazard in home equity conversion. Real Estate Econ 28(1):1–31Skarr D (2008) Financial planner’s guide to the FHA insured home equity conversion mortgage. J Financ Plan 21(5):68–75Sánchez-Álvarez I, Lpez-Ares S, Quiroga-García R (2007) Diseño de hipotecas inversas en el mercado español. Proyecto 205/05 3, Instituto de Mayores y Servicios SocialesTaffin C (2006) La hipoteca inversa o vitalicia. Informes externos, Asociación Hipotecaria EspañolaThatcher A, Kannisto V, Andreev K (2002) The survivor ratio method for estimating numbers at high ages. Demogr Res 6(1):1–18Thatcher A, Kannisto V, Vaupel J (1998) The force of mortality at ages 80 to 120. Odense University Press, OdenseTuljapurkar S, Li N, Boe C (2000) A universal pattern of mortality decline in the G7 countries. Nature 405(6788):789–792Wang L, Valdez E, Piggott J (2008) Securization of longevity risk in reverse mortgages. N Am Actuar J 12(4):345–370Wilmoth J (1993) Computational methods for fitting and extrapolating the Lee–Carter model of mortality change. Technical report, Departament of Demography, University of California, BerkeleyWilmoth J (1996) Health and mortality among elderly populations, chapter mortality projections for Japan: a comparison of four methods. Oxford University Press, Oxford, pp 266–28

    Microwave heating, isothermal sintering, and mechanical properties of powder metallurgy titanium and titanium alloys

    Get PDF
    This article presents a detailed assessment of microwave (MW) heating, isothermal sintering, and the resulting tensile properties of commercially pure Ti (CP-Ti), Ti-6Al-4V, and Ti-10V-2Fe-3Al (wt pct), by comparison with those fabricated by conventional vacuum sintering. The potential of MW sintering for titanium fabrication is evaluated accordingly. Pure MW radiation is capable of heating titanium powder to ≥1573 K (1300 C), but the heating response is erratic and difficult to reproduce. In contrast, the use of SiC MW susceptors ensures rapid, consistent, and controllable MW heating of titanium powder. MW sintering can consolidate CP-Ti and Ti alloys compacted from -100 mesh hydride-dehydride (HDH) Ti powder to ~95.0 pct theoretical density (TD) at 1573 K (1300 C), but no accelerated isothermal sintering has been observed over conventional practice. Significant interstitial contamination occurred from the Al2O3-SiC insulation-susceptor package, despite the high vacuum used (≤4.0 × 10-3 Pa). This leads to erratic mechanical properties including poor tensile ductility. The use of Ti sponge as impurity (O, N, C, and Si) absorbers can effectively eliminate this problem and ensure good-to-excellent tensile properties for MW-sintered CP-Ti, Ti-10V-2Fe-3Al, and Ti-6Al-4V. The mechanisms behind various observations are discussed. The prime benefit of MW sintering of Ti powder is rapid heating. MW sintering of Ti powder is suitable for the fabrication of small titanium parts or titanium preforms for subsequent thermomechanical processing

    Casemix, management, and mortality of patients receiving emergency neurosurgery for traumatic brain injury in the Global Neurotrauma Outcomes Study: a prospective observational cohort study

    Get PDF

    A Recombinant Vaccine Effectively Induces C5a-Specific Neutralizing Antibodies and Prevents Arthritis

    Get PDF
    OBJECTIVES: To develop and validate a recombinant vaccine to attenuate inflammation in arthritis by sustained neutralization of the anaphylatoxin C5a. METHODS: We constructed and expressed fusion protein of C5a and maltose binding protein. Efficacy of specific C5a neutralization was tested using the fusion protein as vaccine in three different arthritis mouse models: collagen induced arthritis (CIA), chronic relapsing CIA and collagen antibody induced arthritis (CAIA). Levels of anti-C5a antibodies and anti-collagen type II were measured by ELISA. C5a neutralization assay was done using a rat basophilic leukemia cell-line transfected with the human C5aR. Complement activity was determined using a hemolytic assay and joint morphology was assessed by histology. RESULTS: Vaccination of mice with MBP-C5a led to significant reduction of arthritis incidence and severity but not anti-collagen antibody synthesis. Histology of the MBP-C5a and control (MBP or PBS) vaccinated mice paws confirmed the vaccination effect. Sera from the vaccinated mice developed C5a-specific neutralizing antibodies, however C5 activation and formation of the membrane attack complex by C5b were not significantly altered. CONCLUSIONS: Exploitation of host immune response to generate sustained C5a neutralizing antibodies without significantly compromising C5/C5b activity is a useful strategy for developing an effective vaccine for antibody mediated and C5a dependent inflammatory diseases. Further developing of such a therapeutic vaccine would be more optimal and cost effective to attenuate inflammation without affecting host immunity

    A Quasi-Exclusive European Ancestry in the Senepol Tropical Cattle Breed Highlights the Importance of the slick Locus in Tropical Adaptation

    Get PDF
    Background: The Senepol cattle breed (SEN) was created in the early XXth century from a presumed cross between a European (EUT) breed (Red Poll) and a West African taurine (AFT) breed (N'Dama). Well adapted to tropical conditions, it is also believed trypanotolerant according to its putative AFT ancestry. However, such origins needed to be verified to define relevant husbandry practices and the genetic background underlying such adaptation needed to be characterized. Methodology/Principal Findings: We genotyped 153 SEN individuals on 47,365 SNPs and combined the resulting data with those available on 18 other populations representative of EUT, AFT and Zebu (ZEB) cattle. We found on average 89% EUT, 10.4% ZEB and 0.6% AFT ancestries in the SEN genome. We further looked for footprints of recent selection using standard tests based on the extent of haplotype homozygosity. We underlined i) three footprints on chromosome (BTA) 01, two of which are within or close to the polled locus underlying the absence of horns and ii) one footprint on BTA20 within the slick hair coat locus, involved in thermotolerance. Annotation of these regions allowed us to propose three candidate genes to explain the observed signals (TIAM1, GRIK1 and RAI14). Conclusions/Significance: Our results do not support the accepted concept about the AFT origin of SEN breed. Initial AFT ancestry (if any) might have been counter-selected in early generations due to breeding objectives oriented in particular toward meat production and hornless phenotype. Therefore, SEN animals are likely susceptible to African trypanosomes which questions the importation of SEN within the West African tsetse belt, as promoted by some breeding societies. Besides, our results revealed that SEN breed is predominantly a EUT breed well adapted to tropical conditions and confirmed the importance in thermotolerance of the slick locus. (Résumé d'auteur
    corecore