55 research outputs found

    What Can We Learn from a Metagenomic Analysis of a Georgian Bacteriophage Cocktail?

    Get PDF
    Phage therapy, a practice widespread in Eastern Europe, has untapped potential in the combat against antibiotic-resistant bacterial infections. However, technology transfer to Western medicine is proving challenging. Bioinformatics analysis could help to facilitate this endeavor. In the present study, the Intesti phage cocktail, a key commercial product of the Eliava Institute, Georgia, has been tested on a selection of bacterial strains, sequenced as a metagenomic sample, de novo assembled and analyzed by bioinformatics methods. Furthermore, eight bacterial host strains were infected with the cocktail and the resulting lysates sequenced and compared to the unamplified cocktail. The analysis identified 23 major phage clusters in different abundances in the cocktail, among those clusters related to the ICTV genera T4likevirus, T5likevirus, T7likevirus, Chilikevirus and Twortlikevirus, as well as a cluster that was quite distant to the database sequences and a novel Proteus phage cluster. Examination of the depth of coverage showed the clusters to have different abundances within the cocktail. The cocktail was found to be composed primarily of Myoviridae (35%) and Siphoviridae (32%), with Podoviridae being a minority (15%). No undesirable genes were found

    A suggested new bacteriophage genus: “Viunalikevirus”

    Get PDF
    We suggest a bacteriophage genus, “Viunalikevirus”, as a new genus within the family Myoviridae. To date, this genus includes seven sequenced members: Salmonella phages ViI, SFP10 and ΦSH19; Escherichia phages CBA120 and PhaxI; Shigella phage phiSboM-AG3; and Dickeya phage LIMEstone1. Their shared myovirus morphology, with comparable head sizes and tail dimensions, and genome organization are considered distinguishing features. They appear to have conserved regulatory sequences, a horizontally acquired tRNA set and the probable substitution of an alternate base for thymine in the DNA. A close examination of the tail spike region in the DNA revealed four distinct tail spike proteins, an arrangement which might lead to the umbrella-like structures of the tails visible on electron micrographs. These properties set the suggested genus apart from the recently ratified subfamily Tevenvirinae, although a significant evolutionary relationship can be observed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00705-012-1360-5) contains supplementary material, which is available to authorized users

    A microfluidic device with fluorimetric detection for intracellular components analysis

    Get PDF
    An integrated microfluidic system that coupled lysis of two cell lines: L929 fibroblasts and A549 epithelial cells, with fluorescence-based enzyme assay was developed to determine β-glucocerebrosidase activity. The microdevice fabricated in poly(dimethylsiloxane) consists of three main parts: a chemical cell lysis zone based on the sheath flow geometry, a micromeander and an optical fibers detection zone. Unlike many methods described in literature that are designed to analyse intracellular components, the presented system enables to perform enzyme assays just after cell lysis process. It reduces the effect of proteases released in lysis process on determined enzymes. Glucocerebrosidase activity, the diagnostic marker for Gaucher’s disease, is the most commonly measured in leukocytes and fibroblasts using 4-methylumbelliferyl-β-D-glucopyranoside as synthetic β-glucoside. The enzyme cleavage releases the fluorescent product, i.e. 4-methylumbelliferone, and its fluorescence is measured as a function of time. The method of enzyme activity determination described in this paper was adapted for flow measurements in the microdevice. The curve of the enzymatic reaction advancement was prepared for three reaction times obtained from application of different flow rates of solutions introduced to the microsystem. Afterwards, determined β-glucocerebrosidase activity was recalculated with regard to 105 cells present in samples used for the tests. The obtained results were compared with a cuvette-based measurements. The lysosomal β-glucosidase activities determined in the microsystem were in good correlation with the values determined during macro-scale measurements

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Prevalence of Escherichia coli O157 and O157:H7-infecting bacteriophages in feedlot cattle feces

    Get PDF
    Aim: To estimate the distribution and prevalence of both Escherichia coli O157 and O157:H7-infecting bacteriophages within a 50 000 head commercial beef feedlot. Methods and Results: Escherichia coli O157 was detected in ∼27% of the individual samples, distributed across seven of the 10 pens screened. In a simple initial screen to detect O157:H7-infecting phages, none were detected in any pen or individual sample. In contrast, after a series of enrichment procedures O157:H7-infecting phages were detected in every pen and in the majority of the samples from most pens; virulent bacteriophages active against E. coli O157:H7 were detected post-enrichment from 39/60 (65%) of the feedlot samples, and 58/60 (∼97%) contained phage that infected E. coli B or O157:H7. Conclusions: The data we present here indicates that we may be grossly underestimating the prevalence of O157:H7-infecting phages in livestock if we simply screen samples and that enrichment screening is required to truly determine the presence of phages in these ecosystems. Significance and Impact of the Study: Our data suggest that O157:H7-infecting phages may play a role in the ecology and transient colonization of cattle by E. coli O157:H7. Further, this and previous data suggest that before starting in vivo pathogen eradication studies using phage or any other regime, test animals should be enrichment screened for phage to avoid erroneous results.Fil: Oot, Rebecca. The Evergreen State College; Estados UnidosFil: Raya, Raul Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Callaway, Todd R.. College Station. Food and Feed Safety Research Unit. Agricultural Research Service; Estados UnidosFil: Edrington, Tom S.. College Station. Food and Feed Safety Research Unit. Agricultural Research Service; Estados UnidosFil: Kutter, Elizabeth M.. The Evergreen State College; Estados UnidosFil: Brabban, Andrew D.. The Evergreen State College; Estados Unido

    Isolation and Characterization of a New T-Even Bacteriophage, CEV1, and Determination of Its Potential To Reduce Escherichia coli O157:H7 Levels in Sheep

    Get PDF
    Bacteriophage CEV1 was isolated from sheep resistant to Escherichia coli O157:H7 colonization. In vitro, CEV1 efficiently infected E. coli O157:H7 grown both aerobically and anaerobically. In vivo, sheep receiving a single oral dose of CEV1 showed a 2-log-unit reduction in intestinal E. coli O157:H7 levels within 2 days compared to levels in the controls

    The genetic basis of phage susceptibility, cross-resistance and host-range in Salmonella.

    No full text
    Though bacteriophages (phages) are known to play a crucial role in bacterial fitness and virulence, our knowledge about the genetic basis of their interaction, cross-resistance and host-range is sparse. Here, we employed genome-wide screens in Salmonella enterica serovar Typhimurium to discover host determinants involved in resistance to eleven diverse lytic phages including four new phages isolated from a therapeutic phage cocktail. We uncovered 301 diverse host factors essential in phage infection, many of which are shared between multiple phages demonstrating potential cross-resistance mechanisms. We validate many of these novel findings and uncover the intricate interplay between RpoS, the virulence-associated general stress response sigma factor and RpoN, the nitrogen starvation sigma factor in phage cross-resistance. Finally, the infectivity pattern of eleven phages across a panel of 23 genome sequenced Salmonella strains indicates that additional constraints and interactions beyond the host factors uncovered here define the phage host range
    corecore