59 research outputs found

    Streptococcus pneumoniae serotype 15B polysaccharide conjugate elicits a cross-functional immune response against serotype 15C but not 15A.

    Get PDF
    Protection conferred by pneumococcal polysaccharide conjugate vaccines (PCVs) is associated with PCV-induced antibodies against vaccine-covered serotypes that exhibit functional opsonophagocytic activity (OPA). Structural similarity between capsular polysaccharides of closely related serotypes may result in induction of cross-reactive antibodies with or without a cross-functional activity against a serotype not covered by a PCV, with the former providing an additional protective clinical benefit. Serotypes 15B, 15A, and 15C, in the serogroup 15, are among the most prevalent Streptococcus pneumoniae serotypes associated with invasive pneumococcal disease following the implementation of a 13-valent PCV; in addition, 15B contributes significantly to acute otitis media. Serological discrimination between closely related serotypes such as 15B and 15C is complicated; here, we implemented an algorithm to quickly differentiate 15B from its closely related serotypes 15C and 15A directly from whole-genome sequencing data. In addition, molecular dynamics simulations of serotypes 15A, 15B, and 15C polysaccharides demonstrated that while 15B and 15C polysaccharides assume rigid branched conformation, 15A polysaccharide assumes a flexible linear conformation. A serotype 15B conjugate, included in a 20-valent PCV (PCV20), induced cross-functional OPA serum antibody responses against the structurally similar serotype 15C but not against serotype 15A, both not included in PCV20. In PCV20-vaccinated adults (18–49 years), robust OPA antibody titers were detected against both serotypes 15B (the geometric mean titer [GMT] of 19,334) and 15C (GMTs of 1692 and 2747 for strains PFE344340 and PFE1160, respectively), but were negligible against serotype 15A (GMTs of 10 and 30 for strains PFE593551 and PFE647449, respectively). Cross-functional 15B/C responses were also confirmed using sera from a larger group of older adults (60–64 years)

    Mechanical model for a collagen fibril pair in extracellular matrix

    Full text link
    In this paper, we model the mechanics of a collagen pair in the connective tissue extracellular matrix that exists in abundance throughout animals, including the human body. This connective tissue comprises repeated units of two main structures, namely collagens as well as axial, parallel and regular anionic glycosaminoglycan between collagens. The collagen fibril can be modeled by Hooke's law whereas anionic glycosaminoglycan behaves more like a rubber-band rod and as such can be better modeled by the worm-like chain model. While both computer simulations and continuum mechanics models have been investigated the behavior of this connective tissue typically, authors either assume a simple form of the molecular potential energy or entirely ignore the microscopic structure of the connective tissue. Here, we apply basic physical methodologies and simple applied mathematical modeling techniques to describe the collagen pair quantitatively. We find that the growth of fibrils is intimately related to the maximum length of the anionic glycosaminoglycan and the relative displacement of two adjacent fibrils, which in return is closely related to the effectiveness of anionic glycosaminoglycan in transmitting forces between fibrils. These reveal the importance of the anionic glycosaminoglycan in maintaining the structural shape of the connective tissue extracellular matrix and eventually the shape modulus of human tissues. We also find that some macroscopic properties, like the maximum molecular energy and the breaking fraction of the collagen, are also related to the microscopic characteristics of the anionic glycosaminoglycan

    Disaccharide topology induces slow down in local water dynamics

    Get PDF
    Molecular level insight into water structure and structural dynamics near proteins, lipids and nucleic acids is critical to the quantitative understanding of many biophysical processes. Un- fortunately, understanding hydration and hydration dynamics around such large molecules is challenging because of the necessity of deconvoluting the effects of topography and chemical heterogeneity. Here we study, via classical all atom simulation, water structure and structural dynamics around two biologically relevant solutes large enough to have significant chemical and topological heterogeneity but small enough to be computationally tractable: the disaccharides Kojibiose and Trehalose. We find both molecules to be strongly amphiphilic (as quantified from normalized local density fluctuations) and to induce nonuniform local slowdown in water translational and rotational motion. Detailed analysis of the rotational slowdown shows that while the rotational mechanism is similar to that previously identified in other aqueous systems by Laage, Hynes and coworkers, two novel characteristics are observed: broadening of the transition state during hydrogen bond exchange (water rotation) and a subpopulation of water for which rotation is slowed because of hindered access of the new accepting water molecule to the transition state. Both of these characteristics are expected to be generic features of water rotation around larger biomolecules and, taken together, emphasize the difficulty in transferring insight into water rotation around small molecules to much larger amphiphilic solutes.This work is part of the research program of the “Stichting voor Fundamenteel Onderzoek der Materie (FOM)” which is financially supported by the “Nederlandse organisatie voor Wetenschap- pelijk Onderzoek (NWO)”. Further financial support was provided by a Marie Curie Incoming International Fellowship (RKC). We gratefully acknowledge SARA, the Dutch center for high- performance computing, for computational time and Huib Bakker and Daan Frenkel for useful critical reviews on an earlier version of this work. We thank two anonymous reviewers for their excellent work, especially for bringing to our attention calculations done on the transition state geometry of dimers and the overstructuring of the O-O radial distribution function of SPC/E water

    Vectorial Competence of Larvae and Adults of Alphitobius diaperinus in the Transmission of Salmonella Enteritidis in Poultry

    No full text
    Introduction: The ingestion of food products originating from poultry infected with Salmonella spp. is one of the major causes of food poisoning in humans. The control of poultry salmonellosis is particularly difficult since birds are asymptomatic and numerous factors may expedite the maintenance of bacteria in poultry production facilities. Objective: The aim of the study was to determine the vectorial capacity of adults and larvae of Alphitobius diaperinus (Coleoptera: Tenebrionidae) in the experimental transmission of Salmonella Enteritidis phage type 4 to 1-day-old specific pathogen-free White Leghorn chicks. Methods: Adult insects and larvae were starved for 1 day, fed for 24 h or 7 days on sterile ration that had been treated with Salmonella Enteritidis phage type 4, and the levels of bacterial infection were determined. Infected adult insects and larvae were fed to groups of day-old chicks, after which bacteria were recovered from cecum, liver, and spleen samples over a 7-day period. Results: Infected larvae were more efficient than adult insects in transmitting Salmonella Enteritidis to chicks. Higher concentrations of bacteria could be reisolated from the cecum, liver, and spleen of chicks that had ingested infected larvae compared with those that had ingested infected adults. Conclusions: The control of A. diaperinus, and particularly of the larvae, represents a critical factor in the reduction of Salmonella spp. in poultry farms

    O-acetylation of typhoid capsular polysaccharide confers polysaccharide rigidity and immunodominance by masking additional epitopes.

    No full text
    In this work, we explore the effects of O-acetylation on the physical and immunological characteristics of the WHO International Standards of Vi polysaccharide (Vi) from both Citrobacter freundii and Salmonella enterica serovar Typhi. We find that, although structurally identical according to NMR, the two Vi standards have differences with respect to susceptibility to de-O-acetylation and viscosity in water. Vi standards from both species have equivalent mass and O-acetylation-dependent binding to a mouse monoclonal antibody and to anti-Vi polyclonal antisera, including the WHO International Standard for human anti-typhoid capsular Vi PS IgG. This study also confirms that human anti-Vi sera binds to completely de-O-acetylated Vi. Molecular dynamics simulations provide conformational rationales for the known effect of de-O-acetylation both on the viscosity and antigenicity of the Vi, demonstrating that de-O-acetylation has a very marked effect on the conformation and dynamic behavior of the Vi, changing the capsular polysaccharide from a rigid helix into a more flexible coil, as well as enhancing the strong interaction of the polysaccharide with sodium ions. Partial de-O-acetylation of Vi revealed hidden epitopes that were recognized by human and sheep anti-Vi PS immune sera. These findings have significance for the manufacture and evaluation of Vi vaccines

    Perturbing the folding energy landscape of the bacterial immunity protein Im7 by site-specific N-linked glycosylation

    No full text
    N-linked glycosylation modulates protein folding and stability through a variety of mechanisms. As such there is considerable interest in the development of general rules to predict the structural consequences of site-specific glycosylation and to understand how these effects can be exploited in the design and development of modified proteins with advantageous properties. In this study, expressed protein ligation is used to create site-specifically glycosylated variants of the bacterial immunity protein Im7 modified with the chitobiose disaccharide (GlcNAc-GlcNAc). Glycans were introduced at seven solvent exposed sites within the Im7 sequence and the kinetic and thermodynamic consequences of N-linked glycosylation analyzed. The ΔΔG° [delta delta G superscript 0 or degree symbol] values for glycan incorporation were found to range from +5.2 to -3.8 kJ·mol-1. In several cases, glycosylation influences folding by modulating the local conformational preferences of the glycosylated sequence. These locally mediated effects are most prominent in the center of α-helices where glycosylation negatively effects folding and in compact turn motifs between segments of ordered secondary structure where glycosylation promotes folding and enhances the overall stability of the native protein. The studies also provide insight into why glycosylation is commonly identified at the transition between different types of secondary structure and when glycosylation may be used to elaborate protein structure to protect disordered sequences from proteolysis or immune system recognition.National Institutes of Health (U.S.) (GM039334)National Science Foundation (U.S.) (0821391)Biotechnology and Biological Sciences Research Council (Great Britain) (Grant BB/526502/1)Biotechnology and Biological Sciences Research Council (Great Britain) (Grant 24/B17145
    • 

    corecore