118 research outputs found

    Ocean temperature and salinity components of the Madden-Julian oscillation observed by Argo floats

    Get PDF
    New diagnostics of the Madden-Julian Oscillation (MJO) cycle in ocean temperature and, for the first time, salinity are presented. The MJO composites are based on 4 years of gridded Argo float data from 2003 to 2006, and extend from the surface to 1,400 m depth in the tropical Indian and Pacific Oceans. The MJO surface salinity anomalies are consistent with precipitation minus evaporation fluxes in the Indian Ocean, and with anomalous zonal advection in the Pacific. The Argo sea surface temperature and thermocline depth anomalies are consistent with previous studies using other data sets. The near-surface density changes due to salinity are comparable to, and partially offset, those due to temperature, emphasising the importance of including salinity as well as temperature changes in mixed-layer modelling of tropical intraseasonal processes. The MJO-forced equatorial Kelvin wave that propagates along the thermocline in the Pacific extends down into the deep ocean, to at least 1,400 m. Coherent, statistically significant, MJO temperature and salinity anomalies are also present in the deep Indian Ocean

    Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors

    Get PDF
    Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75-2.0 g/kg; IP) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol. © 2013 den Hartog et al

    Evolution of GluN2A/B cytoplasmic domains diversified vertebrate synaptic plasticity and behavior

    Get PDF
    Two genome duplications early in the vertebrate lineage expanded gene families, including GluN2 subunits of the NMDA receptor. Diversification between the four mammalian GluN2 proteins occurred primarily at their intracellular C−terminal domains (CTDs). To identify shared ancestral functions and diversified subunit−specific functions, we exchanged the exons encoding the GluN2A (also known as Grin2a) and GluN2B (also known as Grin2b) CTDs in two knock−in mice and analyzed the mice's biochemistry, synaptic physiology, and multiple learned and innate behaviors. The eight behaviors were genetically separated into four groups, including one group comprising three types of learning linked to conserved GluN2A/B regions. In contrast, the remaining five behaviors exhibited subunit−specific regulation. GluN2A/B CTD diversification conferred differential binding to cytoplasmic MAGUK proteins and differential forms of long−term potentiation. These data indicate that vertebrate behavior and synaptic signaling acquired increased complexity from the duplication and diversification of ancestral GluN2 gene

    Brain Deletion of Insulin Receptor Substrate 2 Disrupts Hippocampal Synaptic Plasticity and Metaplasticity

    Get PDF
    Diabetes mellitus is associated with cognitive deficits and an increased risk of dementia, particularly in the elderly. These deficits and the corresponding neurophysiological structural and functional alterations are linked to both metabolic and vascular changes, related to chronic hyperglycaemia, but probably also defects in insulin action in the brain. To elucidate the specific role of brain insulin signalling in neuronal functions that are relevant for cognitive processes we have investigated the behaviour of neurons and synaptic plasticity in the hippocampus of mice lacking the insulin receptor substrate protein 2 (IRS-2)

    Optimization of quantization table based on visual characteristics in DCT image coding

    Get PDF
    AbstractThe DCT (Discrete Cosine Transform) based coding process of full color images is standardized by the JPEG (Joint Photographic Expert Group). The JPEG method is applied widely, for example a color facsimile. The quantization table in the JPEG coding influences image quality. However, detailed research is not accomplished sufficiently about a quantization table. Therefore, we study the relations between quantization table and image quality. We examine first the influence to image quality given by quantization table. Quantization table is grouped into four bands by frequency. When each value of bands is changed, the merit and demerit of color image are examined. At the present time, we analyze the deterioration component of a color image. We study the relationship between the quantization table and the restoration image. Color image is composed of continuoustone level and we evaluate the deterioration component visually. We also analyze it numerically. An analysis method using the 2-D FFT (Fast Fourier Transform) can catch a change of a color image data by a quantization table change. On the basis of these results, we propose a quantization table using Fibonacci numbers
    • …
    corecore