43 research outputs found

    Errors in shaping by a planetary mechanism

    Get PDF
    © 2017, Allerton Press, Inc. The proposed planetary reaming method permits discontinuous turning in which the cutting edge moves relative to the cutting surfaces. As a result, individual sections of the cutting zone move successfully in and out of the machining zone. Discontinuous turning is free of the deficiencies of continuous turning

    Investigation of β + β + and β + /EC decay of 106 Cd

    Get PDF
    A low background scintillation detector with a CdWO4 crystal of 1.046 kg was used to search for β+β+ and β+/EC processes in 106Cd. For the neutrinoless mode the limits T1/2(0νβ+β+) ≥ 2.2 · 1019 y and T1/2(0νβ+/EC) ≥ 5.5 · 1019 y were obtained with 90% C.L. For the possible two neutrino decay limits of T1/2(2νβ+β+) ≥ 9.2 · 1017 y and 1/2(2νβ+/EC) ≥ 2.6 · 1017 y have been determined with 99% C.L

    Solubility of Rock in Steam Atmospheres of Planets

    Get PDF
    Extensive experimental studies show that all major rock-forming elements (e.g., Si, Mg, Fe, Ca, Al, Na, K) dissolve in steam to a greater or lesser extent. We use these results to compute chemical equilibrium abundances of rocky-element-bearing gases in steam atmospheres equilibrated with silicate magma oceans. Rocky elements partition into steam atmospheres as volatile hydroxide gases (e.g., Si(OH)4, Mg(OH)2, Fe(OH)2, Ni(OH)2, Al(OH)3, Ca(OH)2, NaOH, KOH) and via reaction with HF and HCl as volatile halide gases (e.g., NaCl, KCl, CaFOH, CaClOH, FAl(OH)2) in much larger amounts than expected from their vapor pressures over volatile-free solid or molten rock at high temperatures expected for steam atmospheres on the early Earth and hot rocky exoplanets. We quantitatively compute the extent of fractional vaporization by defining gas/magma distribution coefficients and show that Earth's subsolar Si/Mg ratio may be due to loss of a primordial steam atmosphere. We conclude that hot rocky exoplanets that are undergoing or have undergone escape of steam-bearing atmospheres may experience fractional vaporization and loss of Si, Mg, Fe, Ni, Al, Ca, Na, and K. This loss can modify their bulk composition, density, heat balance, and interior structure

    Book reviews

    No full text

    Book reviews

    No full text

    Simulation of Vibrations in Real Time Plane Milling with Spindle Speed Correction

    No full text
    In milling the hard-to-machine materials vibrations (chatter) often arise from the high cutting forces if a technological system is insufficiently rigid.The main way to suppress these vibrations is to increase a stiffness of the mounting system of the tool and the work-piece to be machined. However, sometimes this method doesn’t lead to desirable result because of high values of intrinsic pliability of the tool and the work-piece. Currently, there are more complicated methods to ensure milling process quality. Among them there are three main groups:mathematical simulation of milling process dynamics and computation of processing parameters which provide high quality of machined surface, low level of vibrations and static deflections of a tool and a work-piece;introduction of the active vibration suppression devices into machine tool design; such devices include a vibration sensor, a feedback circuit, and an actuator which induces kinematic or force action on the oscillatory system;control of processing parameters, mainly of rotation frequency for minimizing the amplitudes of vibrations.The paper studies one of the 3rd group methods. There is a suggestion to process a signal of vibrational accelerations in real time and detect a chatter onset. If the chatter has been detected its frequency is to be identified, and the new value of rotation speed is set:where Ω – rotation frequency, rot/s; p – the tool eigenfrequency value identified during processing, Hz; z – mill tooth number; i – positive integer number; ε&lt;1 – small positive parameter. In the current research it is assumed that ε = 0,2.The formula has been chosen because at the rotation frequency axis where tooth pass frequency is slightly less than the eigenfrequency divided by the integer value there are stable zones of dynamics in the milling process.The study shows a developed model of the plane milling dynamics. It includes a dynamic model of the tool, a model of cutting forces, and geometrical models of cutting edges and work-piece surface.  The model is used to study an impact of described control system on the milling process dynamics. Simulations were performed for different values of rotation frequency, and two cases were considered: without and with control. Analysis of the simulations showed that the developed control system provides considerable reduction of vibration amplitudes when milling.</p

    Errors in shaping by a planetary mechanism

    No full text
    © 2017, Allerton Press, Inc. The proposed planetary reaming method permits discontinuous turning in which the cutting edge moves relative to the cutting surfaces. As a result, individual sections of the cutting zone move successfully in and out of the machining zone. Discontinuous turning is free of the deficiencies of continuous turning

    Errors in shaping by a planetary mechanism

    No full text
    © 2017, Allerton Press, Inc. The proposed planetary reaming method permits discontinuous turning in which the cutting edge moves relative to the cutting surfaces. As a result, individual sections of the cutting zone move successfully in and out of the machining zone. Discontinuous turning is free of the deficiencies of continuous turning
    corecore