193 research outputs found

    Dimension reduction for systems with slow relaxation

    Full text link
    We develop reduced, stochastic models for high dimensional, dissipative dynamical systems that relax very slowly to equilibrium and can encode long term memory. We present a variety of empirical and first principles approaches for model reduction, and build a mathematical framework for analyzing the reduced models. We introduce the notions of universal and asymptotic filters to characterize `optimal' model reductions for sloppy linear models. We illustrate our methods by applying them to the practically important problem of modeling evaporation in oil spills.Comment: 48 Pages, 13 figures. Paper dedicated to the memory of Leo Kadanof

    Bioenergetic profile of human coronary artery smooth muscle cells and effect of metabolic intervention

    Get PDF
    Bioenergetics of artery smooth muscle cells is critical in cardiovascular health and disease. An acute rise in metabolic demand causes vasodilation in systemic circulation while a chronic shift in bioenergetic profile may lead to vascular diseases. A decrease in intracellular ATP level may trigger physiological responses while dedifferentiation of contractile smooth muscle cells to a proliferative and migratory phenotype is often observed during pathological processes. Although it is now possible to dissect multiple building blocks of bioenergetic components quantitatively, detailed cellular bioenergetics of artery smooth muscle cells is still largely unknown. Thus, we profiled cellular bioenergetics of human coronary artery smooth muscle cells and effects of metabolic intervention. Mitochondria and glycolysis stress tests utilizing Seahorse technology revealed that mitochondrial oxidative phosphorylation accounted for 54.5% of ATP production at rest with the remaining 45.5% due to glycolysis. Stress tests also showed that oxidative phosphorylation and glycolysis can increase to a maximum of 3.5 fold and 1.25 fold, respectively, indicating that the former has a high reserve capacity. Analysis of bioenergetic profile indicated that aging cells have lower resting oxidative phosphorylation and reduced reserve capacity. Intracellular ATP level of a single cell was estimated to be over 1.1 mM. Application of metabolic modulators caused significant changes in mitochondria membrane potential, intracellular ATP level and ATP:ADP ratio. The detailed breakdown of cellular bioenergetics showed that proliferating human coronary artery smooth muscle cells rely more or less equally on oxidative phosphorylation and glycolysis at rest. These cells have high respiratory reserve capacity and low glycolysis reserve capacity. Metabolic intervention influences both intracellular ATP concentration and ATP:ADP ratio, where subtler changes may be detected by the latter

    Relationship of literacy and heart failure in adults with diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although reading ability may impact educational strategies and management of heart failure (HF), the prevalence of limited literacy in patients with HF is unknown.</p> <p>Methods</p> <p>Subjects were drawn from the Vermont Diabetes Information System Field Survey, a cross-sectional study of adults with diabetes in primary care. Participants' self-reported characteristics were subjected to logistic regression to estimate the association of heart failure and literacy while controlling for social and economic factors. The Short Test of Functional Health Literacy was used to measure literacy.</p> <p>Results</p> <p>Of 172 subjects with HF and diabetes, 27% had limited literacy compared to 15% of 826 subjects without HF (OR 2.05; 95% CI 1.39, 3.02; <it>P </it>< 0.001). Adjusting for age, sex, race, income, marital status and health insurance, HF continued to be significantly associated with limited literacy (OR 1.55, 95% CI 1.00, 2.41, <it>P </it>= .05).</p> <p>After adjusting for education, however, HF was no longer independently associated with literacy (OR 1.31; 95% CI 0.82 – 2.08; <it>P </it>= 0.26).</p> <p>Conclusion</p> <p>Over one quarter of diabetic adults with HF have limited literacy. Although this association is no longer statistically significant when adjusted for education, clinicians should be aware that many of their patients have important limitations in dealing with written materials.</p

    Association of physical function with predialysis blood pressure in patients on hemodialysis

    Full text link
    BACKGROUND: New information from various clinical settings suggests that tight blood pressure control may not reduce mortality and may be associated with more side effects. METHODS: We performed cross-sectional multivariable ordered logistic regression to examine the association between predialysis blood pressure and the short physical performance battery (SPPB) in a cohort of 749 prevalent hemodialysis patients in the San Francisco and Atlanta areas recruited from July 2009 to August 2011 to study the relationship between systolic blood pressure and objective measures of physical function. Mean blood pressure for three hemodialysis sessions was analyzed in the following categories: <110 mmHg, 110-129 mmHg (reference), 130-159 mmHg, and ≥160 mmHg. SPPB includes three components: timed repeated chair stands, timed 15-ft walk, and balance tests. SPPB was categorized into ordinal groups (≤6, 7-9, 10-12) based on prior literature. RESULTS: Patients with blood pressure 130-159 mmHg had lower odds (OR 0.57, 95% CI 0.35-0.93) of scoring in a lower SPPB category than those whose blood pressure was between 110 and 129 mmHg, while those with blood pressure ≥160 mmHg had 0.56 times odds (95% CI 0.33-0.94) of scoring in a lower category when compared with blood pressure 110-129 mmHg. When individual components were examined, blood pressure was significantly associated with chair stand (130-159 mmHg: OR 0.59, 95% CI 0.38-0.92) and gait speed (≥160 mmHg: OR 0.59, 95% CI 0.35-0.98). Blood pressure ≥160 mmHg was not associated with substantially higher SPPB score compared with 130-159 mmHg. CONCLUSIONS: Patients with systolic blood pressure at or above 130 mmHg had better physical performance than patients with lower blood pressure in the normotensive range. The risk-benefit tradeoff of aggressive blood pressure control, particularly in low-functioning patients, should be reexamined

    Cross-validated stepwise regression for identification of novel non-nucleoside reverse transcriptase inhibitor resistance associated mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Linear regression models are used to quantitatively predict drug resistance, the phenotype, from the HIV-1 viral genotype. As new antiretroviral drugs become available, new resistance pathways emerge and the number of resistance associated mutations continues to increase. To accurately identify which drug options are left, the main goal of the modeling has been to maximize predictivity and not interpretability. However, we originally selected linear regression as the preferred method for its transparency as opposed to other techniques such as neural networks. Here, we apply a method to lower the complexity of these phenotype prediction models using a 3-fold cross-validated selection of mutations.</p> <p>Results</p> <p>Compared to standard stepwise regression we were able to reduce the number of mutations in the reverse transcriptase (RT) inhibitor models as well as the number of interaction terms accounting for synergistic and antagonistic effects. This reduction in complexity was most significant for the non-nucleoside reverse transcriptase inhibitor (NNRTI) models, while maintaining prediction accuracy and retaining virtually all known resistance associated mutations as first order terms in the models. Furthermore, for etravirine (ETR) a better performance was seen on two years of unseen data. By analyzing the phenotype prediction models we identified a list of forty novel NNRTI mutations, putatively associated with resistance. The resistance association of novel variants at known NNRTI resistance positions: 100, 101, 181, 190, 221 and of mutations at positions not previously linked with NNRTI resistance: 102, 139, 219, 241, 376 and 382 was confirmed by phenotyping site-directed mutants.</p> <p>Conclusions</p> <p>We successfully identified and validated novel NNRTI resistance associated mutations by developing parsimonious resistance prediction models in which repeated cross-validation within the stepwise regression was applied. Our model selection technique is computationally feasible for large data sets and provides an approach to the continued identification of resistance-causing mutations.</p

    The Plasmodium falciparum STEVOR Multigene Family Mediates Antigenic Variation of the Infected Erythrocyte

    Get PDF
    Modifications of the Plasmodium falciparum–infected red blood cell (iRBC) surface have been linked to parasite-associated pathology. Such modifications enable the parasite to establish long-lasting chronic infection by evading antibody mediate immune recognition and splenic clearance. With the exception of the well-demonstrated roles of var-encoded PfEMP1 in virulence and immune evasion, the biological significance of other variant surface antigens (rif and stevor) is largely unknown. While PfEMP1 and RIFIN have been located on the iRBC surface, recent studies have located STEVOR at the iRBC membrane where it may be exposed on the erythrocyte surface. To investigate the role of STEVOR in more detail, we have developed antibodies against two putative STEVOR proteins and used a combination of indirect immunofluorescence assays (IFA), live IFA, flow cytometry, as well as agglutination assays, which enable us to demonstrate that STEVOR is clonally variant at the surface of schizont stage parasites. Crucially, expression of different STEVOR on the surface of the iRBC changes the antigenic property of the parasite. Taken together, our data for the first time demonstrate that STEVOR plays a role in creating antigenic diversity of schizont stage parasites, thereby adding additional complexity to the immunogenic properties of the iRBC. Furthermore, it clearly demonstrates that to obtain a complete understanding of how parasite-induced pathology is linked to variation on the surface of the iRBC, focusing the interactions of multiple multigene families needs to be considered
    corecore