591 research outputs found
Fine structure in the gamma-ray sky
The EGRET results for gamma-ray intensities in and near the Galactic Plane
have been analysed in some detail. Attention has been concentrated on energies
above 1 GeV and the individual intensities in a longitude bin have
been determined and compared with the large scale mean found from a nine-degree
polynomial fit.
Comparison has been made of the observed standard deviation for the ratio of
these intensities with that expected from variants of our model. The basic
model adopts cosmic ray origin from supernova remnants, the particles then
diffusing through the Galaxy with our usual 'anomalous diffusion'. The variants
involve the clustering of SN, a frequency distribution for supernova explosion
energies, and 'normal', rather than 'anomalous' diffusion.
It is found that for supernovae of unique energy, and our usual anomalous
diffusion, clustering is necessary, particularly in the Inner Galaxy. An
alternative, and preferred, situation is to adopt the model with a frequency
distribution of supernova energies. The results for the Outer Galaxy are such
that no clustering is required.Comment: 10 pages, 4 figures, 1 table, accepted for publication in J.Phys.G:
Nucl.Part.Phy
Classification, substrate specificity and structural features of D-2-hydroxyacid dehydrogenases: 2HADH knowledgebase
BACKGROUND: The family of D-isomer specific 2-hydroxyacid dehydrogenases (2HADHs) contains a wide range of oxidoreductases with various metabolic roles as well as biotechnological applications. Despite a vast amount of biochemical and structural data for various representatives of the family, the long and complex evolution and broad sequence diversity hinder functional annotations for uncharacterized members. RESULTS: We report an in-depth phylogenetic analysis, followed by mapping of available biochemical and structural data on the reconstructed phylogenetic tree. The analysis suggests that some subfamilies comprising enzymes with similar yet broad substrate specificity profiles diverged early in the evolution of 2HADHs. Based on the phylogenetic tree, we present a revised classification of the family that comprises 22 subfamilies, including 13 new subfamilies not studied biochemically. We summarize characteristics of the nine biochemically studied subfamilies by aggregating all available sequence, biochemical, and structural data, providing comprehensive descriptions of the active site, cofactor-binding residues, and potential roles of specific structural regions in substrate recognition. In addition, we concisely present our analysis as an online 2HADH enzymes knowledgebase. CONCLUSIONS: The knowledgebase enables navigation over the 2HADHs classification, search through collected data, and functional predictions of uncharacterized 2HADHs. Future characterization of the new subfamilies may result in discoveries of enzymes with novel metabolic roles and with properties beneficial for biotechnological applications
Si and Fe depletion in Galactic star-forming regions observed by the Spitzer Space Telescope
We report the results of the mid-infrared spectroscopy of 14 Galactic
star-forming regions with the high-resolution modules of the Infrared
Spectrograph (IRS) on board the Spitzer Space Telescope. We detected [SiII]
35um, [FeII] 26um, and [FeIII] 23um as well as [SIII] 33um and H2 S(0) 28um
emission lines. Using the intensity of [NII] 122um or 205um and [OI] 146um or
63um reported by previous observations in four regions, we derived the ionic
abundance Si+/N+ and Fe+/N+ in the ionized gas and Si+/O0 and Fe+/O0 in the
photodissociation gas. For all the targets, we derived the ionic abundance of
Si+/S2+ and Fe2+/S2+ for the ionized gas. Based on photodissociation and HII
region models the gas-phase Si and Fe abundance are suggested to be 3-100% and
<8% of the solar abundance, respectively, for the ionized gas and 16-100% and
2-22% of the solar abundance, respectively, for the photodissociation region
gas. Since the [FeII] 26um and [FeIII] 23um emissions are weak, the high
sensitivity of the IRS enables to derive the gas-phase Fe abundance widely in
star-forming regions. The derived gas-phase Si abundance is much larger than
that in cool interstellar clouds and that of Fe. The present study indicates
that 3-100% of Si atoms and <22% of Fe atoms are included in dust grains which
are destroyed easily in HII regions, probably by the UV radiation. We discuss
possible mechanisms to account for the observed trend; mantles which are
photodesorbed by UV photons, organometallic complexes, or small grains.Comment: 43 pages with 7 figures, accepted in Astrophysical Journa
Recommended from our members
Mitigation of Moral Hazard and Adverse Selection in Venture Capital Financing: The Influence of the Country’s Institutional Setting
A venture capitalist (VC) needs to trade off benefits and costs when attempting to mitigate agency problems in their investor-investee relationship. We argue that signals of ventures complement the VC’s capacity to screen and conduct a due diligence during the pre-investment phase, but its attractiveness may diminish in institutional settings supporting greater transparency. Similarly, whereas a VC may opt for contractual covenants to curb potential opportunism by ventures in the post-investment phase, this may only be effective in settings supportive of shareholder rights enforcement. Using an international sample of VC contracts, our study finds broad support for these conjectures. It delineates theoretical and practical implications for how investors can best deploy their capital in different institutional settings whilst nurturing their relationships with entrepreneurs
Topological Orthoalgebras
We define topological orthoalgebras (TOAs) and study their properties. While
every topological orthomodular lattice is a TOA, the lattice of projections of
a Hilbert space is an example of a lattice-ordered TOA that is not a toplogical
lattice. On the other hand, we show that every compact Boolean TOA is a
topological Boolean algebra. We also show that a compact TOA in which 0 is an
isolated point is atomic and of finite height. We identify and study a
particularly tractable class of TOAs, which we call {\em stably ordered}: those
in which the upper-set generated by an open set is open. This includes all
topological OMLs, and also the projection lattices of Hilbert spaces. Finally,
we obtain a topological version of the Foulis-Randall representation theory for
stably ordered TOAsComment: 16 pp, LaTex. Minor changes and corrections in sections 1; more
substantial corrections in section
Dimension reduction for systems with slow relaxation
We develop reduced, stochastic models for high dimensional, dissipative
dynamical systems that relax very slowly to equilibrium and can encode long
term memory. We present a variety of empirical and first principles approaches
for model reduction, and build a mathematical framework for analyzing the
reduced models. We introduce the notions of universal and asymptotic filters to
characterize `optimal' model reductions for sloppy linear models. We illustrate
our methods by applying them to the practically important problem of modeling
evaporation in oil spills.Comment: 48 Pages, 13 figures. Paper dedicated to the memory of Leo Kadanof
Search for Interstellar Furan and lmidazole
Results are reported of an unsuccessful 6-cm search for the hetrocyclic carbon ring molecules furan and imidazole. Upper limits in brightness temperature of 0.25 K or less are found for furan in 11 galactic sources, and of less than 0.1 K for imidazole in Sgr A and Sgr B2
Motion of a driven tracer particle in a one-dimensional symmetric lattice gas
We study the dynamics of a tracer particle subject to a constant driving
force in a one-dimensional lattice gas of hard-core particles whose
transition rates are symmetric. We show that the mean displacement of the
driven tracer grows in time, , as , rather than the linear
time dependence found for driven diffusion in the bath of non-interacting
(ghost) particles. The prefactor is determined implicitly, as the
solution of a transcendental equation, for an arbitrary magnitude of the
driving force and an arbitrary concentration of the lattice gas particles. In
limiting cases the prefactor is obtained explicitly. Analytical predictions are
seen to be in a good agreement with the results of numerical simulations.Comment: 21 pages, LaTeX, 4 Postscript fugures, to be published in Phys. Rev.
E, (01Sep, 1996
HARP/ACSIS: A submillimetre spectral imaging system on the James Clerk Maxwell Telescope
This paper describes a new Heterodyne Array Receiver Programme (HARP) and
Auto-Correlation Spectral Imaging System (ACSIS) that have recently been
installed and commissioned on the James Clerk Maxwell Telescope (JCMT). The
16-element focal-plane array receiver, operating in the submillimetre from 325
to 375 GHz, offers high (three-dimensional) mapping speeds, along with
significant improvements over single-detector counterparts in calibration and
image quality. Receiver temperatures are 120 K across the whole band and
system temperatures of 300K are reached routinely under good weather
conditions. The system includes a single-sideband filter so these are SSB
figures. Used in conjunction with ACSIS, the system can produce large-scale
maps rapidly, in one or more frequency settings, at high spatial and spectral
resolution. Fully-sampled maps of size 1 square degree can be observed in under
1 hour.
The scientific need for array receivers arises from the requirement for
programmes to study samples of objects of statistically significant size, in
large-scale unbiased surveys of galactic and extra-galactic regions. Along with
morphological information, the new spectral imaging system can be used to study
the physical and chemical properties of regions of interest. Its
three-dimensional imaging capabilities are critical for research into
turbulence and dynamics. In addition, HARP/ACSIS will provide highly
complementary science programmes to wide-field continuum studies, and produce
the essential preparatory work for submillimetre interferometers such as the
SMA and ALMA.Comment: MNRAS Accepted 2009 July 2. 18 pages, 25 figures and 6 table
Using Stochastic Causal Trees to Augment Bayesian Networks for Modeling eQTL Datasets
<p>Abstract</p> <p>Background</p> <p>The combination of genotypic and genome-wide expression data arising from segregating populations offers an unprecedented opportunity to model and dissect complex phenotypes. The immense potential offered by these data derives from the fact that genotypic variation is the sole source of perturbation and can therefore be used to reconcile changes in gene expression programs with the parental genotypes. To date, several methodologies have been developed for modeling eQTL data. These methods generally leverage genotypic data to resolve causal relationships among gene pairs implicated as associates in the expression data. In particular, leading studies have augmented Bayesian networks with genotypic data, providing a powerful framework for learning and modeling causal relationships. While these initial efforts have provided promising results, one major drawback associated with these methods is that they are generally limited to resolving causal orderings for transcripts most proximal to the genomic loci. In this manuscript, we present a probabilistic method capable of learning the causal relationships between transcripts at all levels in the network. We use the information provided by our method as a prior for Bayesian network structure learning, resulting in enhanced performance for gene network reconstruction.</p> <p>Results</p> <p>Using established protocols to synthesize eQTL networks and corresponding data, we show that our method achieves improved performance over existing leading methods. For the goal of gene network reconstruction, our method achieves improvements in recall ranging from 20% to 90% across a broad range of precision levels and for datasets of varying sample sizes. Additionally, we show that the learned networks can be utilized for expression quantitative trait loci mapping, resulting in upwards of 10-fold increases in recall over traditional univariate mapping.</p> <p>Conclusions</p> <p>Using the information from our method as a prior for Bayesian network structure learning yields large improvements in accuracy for the tasks of gene network reconstruction and expression quantitative trait loci mapping. In particular, our method is effective for establishing causal relationships between transcripts located both proximally and distally from genomic loci.</p
- …