50 research outputs found

    Challenges and New Approaches to Proving the Existence of Muscle Synergies of Neural Origin

    Get PDF
    Muscle coordination studies repeatedly show low-dimensionality of muscle activations for a wide variety of motor tasks. The basis vectors of this low-dimensional subspace, termed muscle synergies, are hypothesized to reflect neurally-established functional muscle groupings that simplify body control. However, the muscle synergy hypothesis has been notoriously difficult to prove or falsify. We use cadaveric experiments and computational models to perform a crucial thought experiment and develop an alternative explanation of how muscle synergies could be observed without the nervous system having controlled muscles in groups. We first show that the biomechanics of the limb constrains musculotendon length changes to a low-dimensional subspace across all possible movement directions. We then show that a modest assumptionβ€”that each muscle is independently instructed to resist length changeβ€”leads to the result that electromyographic (EMG) synergies will arise without the need to conclude that they are a product of neural coupling among muscles. Finally, we show that there are dimensionality-reducing constraints in the isometric production of force in a variety of directions, but that these constraints are more easily controlled for, suggesting new experimental directions. These counter-examples to current thinking clearly show how experimenters could adequately control for the constraints described here when designing experiments to test for muscle synergiesβ€”but, to the best of our knowledge, this has not yet been done

    Evidence for sparse synergies in grasping actions

    Get PDF
    Converging evidence shows that hand-actions are controlled at the level of synergies and not single muscles. One intriguing aspect of synergy-based action-representation is that it may be intrinsically sparse and the same synergies can be shared across several distinct types of hand-actions. Here, adopting a normative angle, we consider three hypotheses for hand-action optimal-control: sparse-combination hypothesis (SC) – sparsity in the mapping between synergies and actions - i.e., actions implemented using a sparse combination of synergies; sparse-elements hypothesis (SE) – sparsity in synergy representation – i.e., the mapping between degrees-of-freedom (DoF) and synergies is sparse; double-sparsity hypothesis (DS) – a novel view combining both SC and SE – i.e., both the mapping between DoF and synergies and between synergies and actions are sparse, each action implementing a sparse combination of synergies (as in SC), each using a limited set of DoFs (as in SE). We evaluate these hypotheses using hand kinematic data from six human subjects performing nine different types of reach-to-grasp actions. Our results support DS, suggesting that the best action representation is based on a relatively large set of synergies, each involving a reduced number of degrees-of-freedom, and that distinct sets of synergies may be involved in distinct tasks

    Expanding ART for Treatment and Prevention of HIV in South Africa: Estimated Cost and Cost-Effectiveness 2011-2050

    Get PDF
    Background: Antiretroviral Treatment (ART) significantly reduces HIV transmission. We conducted a cost-effectiveness analysis of the impact of expanded ART in South Africa. Methods: We model a best case scenario of 90% annual HIV testing coverage in adults 15-49 years old and four ART eligibility scenarios: CD4 count <200 cells/mm3(current practice), CD4 count <350, CD4 count <500, all CD4 levels. 2011-2050 outcomes include deaths, disability adjusted life years (DALYs), HIV infections, cost, and cost per DALY averted. Service and ART costs reflect South African data and international generic prices. ART reduces transmission by 92%. We conducted sensitivity analyses. Results: Expanding ART to CD4 count <350 cells/mm3prevents an estimated 265,000 (17%) and 1.3 million (15%) new HIV infections over 5 and 40 years, respectively. Cumulative deaths decline 15%, from 12.5 to 10.6 million; DALYs by 14% from 109 to 93 million over 40 years. Costs drop 504millionover5yearsand504 million over 5 years and 3.9 billion over 40 years with breakeven by 2013. Compared with the current scenario, expanding to <500 prevents an additional 585,000 and 3 million new HIV infections over 5 and 40 years, respectively. Expanding to all CD4 levels decreases HIV infections by 3.3 million (45%) and costs by 10billionover40years,withbreakevenby2023.By2050,usinghigherARTandmonitoringcosts,allCD4levelssaves10 billion over 40 years, with breakeven by 2023. By 2050, using higher ART and monitoring costs, all CD4 levels saves 0.6 billion versus current; other ART scenarios cost 9βˆ’194perDALYaverted.IfARTreducestransmissionby999-194 per DALY averted. If ART reduces transmission by 99%, savings from all CD4 levels reach 17.5 billion. Sensitivity analyses suggest that poor retention and predominant acute phase transmission reduce DALYs averted by 26% and savings by 7%. Conclusion: Increasing the provision of ART to <350 cells/mm3 may significantly reduce costs while reducing the HIV burden. Feasibility including HIV testing and ART uptake, retention, and adherence should be evaluated

    Optimization of Muscle Activity for Task-Level Goals Predicts Complex Changes in Limb Forces across Biomechanical Contexts

    Get PDF
    Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (nβ€Š=β€Š3) across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (β‰ˆ2Γ—) compared to individual muscle control. Our results are consistent with the idea that hierarchical, task-level neural control mechanisms previously associated with voluntary tasks may also be used in automatic brainstem-mediated pathways for balance

    Impact of early adverse life events and sex on functional brain networks in patients with urological chronic pelvic pain syndrome (UCPPS): A MAPP Research Network study.

    No full text
    Pain is a highly complex and individualized experience with biopsychosocial components. Neuroimaging research has shown evidence of the involvement of the central nervous system in the development and maintenance of chronic pain conditions, including urological chronic pelvic pain syndrome (UCPPS). Furthermore, a history of early adverse life events (EALs) has been shown to adversely impact symptoms throughout childhood and into adulthood. However, to date, the role of EAL's in the central processes of chronic pain have not been adequately investigated. We studied 85 patients (56 females) with UCPPS along with 86 healthy controls (HCs) who had resting-state magnetic resonance imaging scans (59 females), and data on EALs as a part of the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network Study. We used graph theory methods in order to investigate the impact of EALs on measures of centrality, which characterize information flow, communication, influence, and integration in a priori selected regions of interest. Patients with UCPPS exhibited lower centrality in the right anterior insula compared to HCs, a key node in the salience network. Males with UCPPS exhibited lower centrality in the right anterior insula compared the HC males. Females with UCPPS exhibited greater centrality in the right caudate nucleus and left angular gyrus compared to HC females. Males with UCPPS exhibited lower centrality in the left posterior cingulate, angular gyrus, middle temporal gyrus, and superior temporal sulcus, but greater centrality in the precuneus and anterior mid-cingulate cortex (aMCC) compared to females with UCPPS. Higher reports of EALs was associated with greater centrality in the left precuneus and left aMCC in females with UCPPS. This study provides evidence for disease and sex-related alterations in the default mode, salience, and basal ganglia networks in patients with UCPPS, which are moderated by EALs, and associated with clinical symptoms and quality of life (QoL)
    corecore