39 research outputs found

    A software-defined receiver for laser communications using a GPU

    Get PDF
    This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018Cataloged from PDF version of thesis.Includes bibliographical references (pages 43-46).Laser commiunication systems provide a high data rate, power efficient communication solution for small satellites and deep space missions. One challenge that limits the widespread use of laser communication systems is the lack of accessible, low-complexity receiver electronics and software implementations. Graphics Processing Units (GPUs) can reduce the complexity in receiver design since GPUs require less specialized knowledge and can enable faster development times than Field Programmnable Cate Array (FPGA) implementations, while still retaining comparable data throughputs via parallelization. This thesis explores the use of a Graphics Processing Unit (GPU) as the sole computational unit for the signal processing algorithms involved in laser conmnunications.by Joseph Matthew Kusters.M. Eng.M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienc

    Design and Prototyping of a Nanosatellite Laser Communications Terminal for the Cubesat Laser Infrared CrosslinK (CLICK) B/C Mission

    Get PDF
    The CubeSat Laser Infrared CrossLink (CLICK) mission goal is to demonstrate a low cost, high data rate optical transceiver terminal with fine pointing and precision time transfer in aleq1.5U form factor. There are two phases to the technology demonstration for the CLICK mission: CLICK-A downlink, and then CLICK-B/C crosslink and downlink. The topic of this paper is the design and prototyping of the laser communications (lasercom) terminal for the CLICK-B/C phase. CLICK B/C consists of two identical 3U CubeSats from Blue Canyon Technologies that will be launched together in Low Earth Orbit to demonstrate crosslinks at ranges between 25 km and 580 km with a data rate of ≥20 Mbps and a ranging capability better than 0.5 m. Downlinks with data rates of ≥10 Mbps will also be demonstrated to the Portable Telescope for Lasercom (PorTeL) ground station. Link analysis using current parameters & experimental results predicts successful crosslink & downlink communications and ranging. Moreover, closed-loop 3σ fine pointing error is predicted to be less than 39.66 μrad of the 121.0 μrad 1/e² transmit laser divergence. The status of the payload EDU and recent developments of the optomechanical and thermal designs are discussed

    Testing of the CubeSat Laser Infrared CrosslinK (CLICK-A) Payload

    Get PDF
    The CubeSat Laser Infrared CrosslinK (CLICK-A) is a risk-reduction mission that will demonstrate a miniaturized optical transmitter capable of ≥10 Mbps optical downlinks from a 3U CubeSat to aportable 30 cm optical ground telescope. The payload is jointly developed by MIT and NASA ARC, and is on schedule for a 2020 bus integration and 2021 launch. The mission purpose is to reduce risk to its follow-up in 2022, called CLICK-B/C, that plans to demonstrate ≥20 Mbps intersatellite optical crosslinks and precision ranging between two 3U CubeSats. The 1.4U CLICK-A payload will fly on a Blue Canyon Technologies 3U bus inserted into a 400 km orbit. The payload will demonstrate both the transmitter optoelectronics and the fine-pointing system based on a MEMS fast steering mirror, which enables precision pointing of its 1300 μrad full-width half-maximum (FWHM) downlink beam with anestimated error of 136.9 μrad (3-σ) for a pointing loss of -0.134 dB (3-σ) at the time of link closure. We present recent test results of the CLICK-A payload, including results from thermal-vacuum testing, beam characterization, functional testing of the transmitter, and thermal analyses including measurement of deformation due to the thermal loading of the MEMS FSM

    Systematic investigation of gastrointestinal diseases in China (SILC): validation of survey methodology

    Get PDF
    Background: Symptom-based surveys suggest that the prevalence of gastrointestinal diseases is lower in China than in Western countries. The aim of this study was to validate a methodology for the epidemiological investigation of gastrointestinal symptoms and endoscopic findings in China. Methods: A randomized, stratified, multi-stage sampling methodology was used to select 18 000 adults aged 18-80 years from Shanghai, Beijing, Xi'an, Wuhan and Guangzhou. Participants from Shanghai were invited to provide blood samples and undergo upper gastrointestinal endoscopy. All participants completed Chinese versions of the Reflux Disease Questionnaire (RDQ) and the modified Rome II questionnaire; 20% were also invited to complete the 36-item Short Form Health Survey (SF-36) and Epworth Sleepiness Scale (ESS). The psychometric properties of the questionnaires were evaluated statistically. Results: The study was completed by 16 091 individuals (response rate: 89.4%), with 3219 (89.4% of those invited) completing the SF-36 and ESS. All 3153 participants in Shanghai provided blood samples and 1030 (32.7%) underwent endoscopy. Cronbach's alpha coefficients were 0.89, 0.89, 0.80 and 0.91, respectively, for the RDQ, modified Rome II questionnaire, ESS and SF-36, supporting internal consistency. Factor analysis supported construct validity of all questionnaire dimensions except SF-36 psychosocial dimensions. Conclusion: This population-based study has great potential to characterize the relationship between gastrointestinal symptoms and endoscopic findings in China.Xiaoyan Yan, Rui Wang, Yanfang Zhao, Xiuqiang Ma, Jiqian Fang, Hong Yan, Xiaoping Kang, Ping Yin, Yuantao Hao, Qiang Li, John Dent, Joseph Sung, Duowu Zou, Saga Johansson, Katarina Halling, Wenbin Liu and Jia H

    The Human Phenotype Ontology in 2024: phenotypes around the world

    Get PDF
    \ua9 The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs

    The Human Phenotype Ontology in 2024: phenotypes around the world.

    Get PDF
    The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs

    Integration and Testing of the Nanosatellite Optical Downlink Experiment

    Get PDF
    Free space optical (FSO) communications have the potential to outperform traditional radio frequency data rates by orders of magnitude using comparable mass, volume, and power. The Nanosatellite Optical Downlink Experiment (NODE) is a 1.2U, 1 kg, 15 W, 1550 nm CubeSat downlink transmitter that uses a master-oscillator power amplifier configuration with a modest 1.3 mrad half-power beamwidth (HPBW) enabled by a microelectromechanical system (MEMS) Fast Steering Mirror (FSM) [1],[4]. NODE is designed to be compatible with the Portable Telescope for Lasercom (PorTeL) ground station [3],[6],[19], which has successfully demonstrated tracking of low Earth orbit objects to better than 5 arcseconds RMS. The flight-like opto-mechanical NODE engineering model has successfully passed vibration testing at qualification levels specified by NASA GEVS [9]. The engineering model has also passed thermal testing in vacuum under worst-case expected environmental loads, and component operational temperatures remained within limits. Tests of the opto-mechanical alignment and control algorithms meet +/- 0.05 mrad (3-sigma) for the space and ground terminals. We present results from the NODE engineering unit and flight unit development, integration, and testing, as well as interface test results with PorTeL

    The CubeSat Laser Infrared CrosslinK Mission (CLICK)

    No full text
    © COPYRIGHT SPIE. The CubeSat Laser Infrared CrosslinK mission is a joint Massachusetts Institute of Technology (MIT), University of Florida (UF), and NASA Ames Research Center effort to develop laser communications (lasercom) transceivers. The terminals demonstrate full-duplex intersatellite communications and ranging capability using commercial components to enable future large constellations or swarms of nanosatellites as coordinated distributed sensor systems. CLICK will demonstrate a crosslink between two CubeSats that each host a < 2U lasercom payload. Range control is achieved using differential drag in Low Earth Orbit (LEO), with attitude controlled using a three-axis reaction wheel assembly and attitude sensors, including star trackers. The lasercom terminals are direct-detect and rate scalable, designed to achieve a 20 Mbps crosslink at ranges from 25 km to 580 km and operate full-duplex at 1537 nm and 1563 nm with 200 mW of transmit power and a 14.6 arcscecond (0.07 milliradian) full width half max (FWHM) beamwidth. The terminals also use a 976 nm, 500 mW, 0.75 degree FWHM beacon and a quadcell for initial acquisition, and a low-rate radio crosslink for exchanging orbit information. The payload transmitter is a master oscillator power amplifier (MOPA) with fiber Bragg grating for pulse shaping and MEMS fast steering mirror (FSM) for fine pointing, modeled after the MIT Nanosatellite Optical Downlink Experiment. The transceiver leverages UF's Miniature Optical Communications Transmitter (MOCT) including a chip-scale atomic clock (CSAC). The receiver implements both a time to digital converter (TDC) as well as pulse recovery and matched filtering for precision ranging
    corecore