62 research outputs found

    A Range of Earth Observation Techniques for Assessing Plant Diversity

    Get PDF
    AbstractVegetation diversity and health is multidimensional and only partially understood due to its complexity. So far there is no single monitoring approach that can sufficiently assess and predict vegetation health and resilience. To gain a better understanding of the different remote sensing (RS) approaches that are available, this chapter reviews the range of Earth observation (EO) platforms, sensors, and techniques for assessing vegetation diversity. Platforms include close-range EO platforms, spectral laboratories, plant phenomics facilities, ecotrons, wireless sensor networks (WSNs), towers, air- and spaceborne EO platforms, and unmanned aerial systems (UAS). Sensors include spectrometers, optical imaging systems, Light Detection and Ranging (LiDAR), and radar. Applications and approaches to vegetation diversity modeling and mapping with air- and spaceborne EO data are also presented. The chapter concludes with recommendations for the future direction of monitoring vegetation diversity using RS

    Applications of a remote sensing-based two-source energy balance algorithm for mapping surface fluxes without in-situ air temperature observations

    No full text
    The two-source energy balance (TSEB) model uses remotely sensed maps of land–surface temperature (LST) along with local air temperature estimates at a nominal blending height to model heat and water fluxes across a landscape, partitioned between dual sources of canopy and soil. For operational implementation of TSEB, however, it is often difficult to obtain representative air temperature data that are compatible with the LST retrievals, which may themselves have residual errors due to atmospheric and emissivity corrections. To address this issue, two different strategies in applying the TSEB model without requiring local air temperature data were tested over a typical Mediterranean agricultural area using a set of high-resolution multispectral airborne remote sensing images. Alleviating the need for accurate local air temperature data as input, these two approaches estimate the surface-to-air temperature gradient that drives the sensible heat flux by directly exploiting the information available in the image. The two approaches include: 1) a scene-based internal calibration (TSEB-IC) procedure that estimates air temperature over a well-watered and fully vegetated pixel in the LST image, and 2) a disaggregation scheme (DisALEXI) that uses air temperature estimates from a time-differential coupled TSEBatmospheric boundary layer model of atmosphere–land exchange (ALEXI). A comparison of the air temperatures modeled by TSEB-IC and DisALEXI with in situ weather station observations shows good agreement, with average differences on the order of 1 K, comparable with the uncertainties in the remotely sensed surface temperature maps. Surface fluxes estimated by each method agree well with micro-meteorological measurements acquired over an olive orchard within the aircraft imaging domain. In comparison with fluxes generated with TSEB using local measurements of air temperature, instantaneous fluxes from these alternative methods show good spatial agreement, with differences of less than 10 W/m^2 across the domain. Finally, a sensitivity analysis of the three models, performed by introducing artificial errors into the model inputs, demonstrates that the DisALEXI and TSEB-IC approaches are relatively insensitive to errors in absolute surface temperature calibration, while turbulent fluxes from TSEB applications using local air temperature measurements show sensitivity of approximately 30 W/m^2 per degree temperature perturbation. This highlights the value of both internal calibration and timedifferential estimation of the surface-to-air temperature gradient within a surface energy balance framework

    Analysis of energy fluxes estimations over Italy using time-differencing models based on thermal remote sensing data

    No full text
    Large area estimations of land surface fluxes can be a useful operational tool for up-scaling local measurements and can serve as an upper-boundary condition for higher spatial resolution applications. Given hourly measurements of radiometric surface temperature from a geostationary satellite, it is possible to derive the partitioning of energy fluxes based on the influence of the evapotranspiration process on morning surface temperature rise. In this work, the Atmosphere-Land Exchange Inverse (ALEXI) model and the Dual Temperature Difference (DTD) approach were applied in order to relate the sensible heat flux to time-differential remote observations of surface temperature obtained from Meteosat satellite data. Copyright © 2012 IAHS Press
    • …
    corecore