288 research outputs found

    Combining Graphics Processing Units, Simplified Time-Dependent Density Functional Theory, and Finite-Difference Couplings to Accelerate Nonadiabatic Molecular Dynamics

    Get PDF
    Starting from our recently published implementation of nonadiabatic molecular dynamics (NAMD) on graphics processing units (GPUs), we explore further approaches to accelerate ab initio NAMD calculations at the time-dependent density functional theory (TDDFT) level of theory. We employ (1) the simplified TDDFT schemes of Grimme et al. and (2) the Hammes-Schiffer−Tully approach to obtain nonadiabatic couplings from finite-difference calculations. The resulting scheme delivers an accurate physical picture while virtually eliminating the two computationally most demanding steps of the algorithm. Combined with our GPU-based integral routines for SCF, TDDFT, and TDDFT derivative calculations, NAMD simulations of systems of a few hundreds of atoms at a reasonable time scale become accessible on a single compute node. To demonstrate this and to present a first, illustrative example, we perform TDDFT/MM-NAMD simulations of the rhodopsin protein

    Nonadiabatic Molecular Dynamics on Graphics Processing Units: Performance and Application to Rotary Molecular Motors

    Get PDF
    Nonadiabatic molecular dynamics (NAMD) simulations of molecular systems require the efficient evaluation of excited-state properties, such as energies, gradients, and nonadiabatic coupling vectors. Here, we investigate the use of graphics processing units (GPUs) in addition to central processing units (CPUs) to efficiently calculate these properties at the time-dependent density functional theory (TDDFT) level of theory. Our implementation in the FermiONs++ program package uses the J-engine and a preselective screening procedure for the calculation of Coulomb and exchange kernels, respectively. We observe good speed-ups for small and large molecular systems (comparable to those observed in ground-state calculations) and reduced (down to sublinear) scaling behavior with respect to the system size (depending on the spatial locality of the investigated excitation). As a first illustrative application, we present efficient NAMD simulations of a series of newly designed light-driven rotary molecular motors and compare their S1 lifetimes. Although all four rotors show different S1 excitation energies, their ability to rotate upon excitation is conserved, making the series an interesting starting point for rotary molecular motors with tunable excitation energies

    Urinary Metabolic Phenotyping Reveals Differences in the Metabolic Status of Healthy and Inflammatory Bowel Disease (IBD) Children in Relation to Growth and Disease Activity.

    Get PDF
    Growth failure and delayed puberty are well known features of children and adolescents with inflammatory bowel disease (IBD), in addition to the chronic course of the disease. Urinary metabonomics was applied in order to better understand metabolic changes between healthy and IBD children. 21 Pediatric patients with IBD (mean age 14.8 years, 8 males) were enrolled from the Pediatric Gastroenterology Outpatient Clinic over two years. Clinical and biological data were collected at baseline, 6, and 12 months. 27 healthy children (mean age 12.9 years, 16 males) were assessed at baseline. Urine samples were collected at each visit and subjected to ¹H Nuclear Magnetic Resonance (NMR) spectroscopy. Using ¹H NMR metabonomics, we determined that urine metabolic profiles of IBD children differ significantly from healthy controls. Metabolic differences include central energy metabolism, amino acid, and gut microbial metabolic pathways. The analysis described that combined urinary urea and phenylacetylglutamine-two readouts of nitrogen metabolism-may be relevant to monitor metabolic status in the course of disease. Non-invasive sampling of urine followed by metabonomic profiling can elucidate and monitor the metabolic status of children in relation to disease status. Further developments of omic-approaches in pediatric research might deliver novel nutritional and metabolic hypotheses

    Comparative gene expression profiling between human cultured myotubes and skeletal muscle tissue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A high-sensitivity DNA microarray platform requiring nanograms of RNA input facilitates the application of transcriptome analysis to individual skeletal muscle (SM) tissue samples. Culturing myotubes from SM-biopsies enables investigating transcriptional defects and assaying therapeutic strategies. This study compares the transcriptome of aneurally cultured human SM cells versus that of tissue biopsies.</p> <p>Results</p> <p>We used the Illumina expression BeadChips to determine the transcriptomic differences between tissue and cultured SM samples from five individuals. Changes in the expression of several genes were confirmed by QuantiGene Plex assay or reverse transcription real-time PCR. In cultured myotubes compared to the tissue, 1216 genes were regulated: 583 down and 633 up. Gene ontology analysis showed that downregulated genes were mainly associated with cytoplasm, particularly mitochondria, and involved in metabolism and the muscle-system/contraction process. Upregulated genes were predominantly related to cytoplasm, endoplasmic reticulum, and extracellular matrix. The most significantly regulated pathway was mitochondrial dysfunction. Apoptosis genes were also modulated. Among the most downregulated genes detected in this study were genes encoding metabolic proteins AMPD1, PYGM, CPT1B and UCP3, muscle-system proteins TMOD4, MYBPC1, MYOZ1 and XIRP2, the proteolytic CAPN3 and the myogenic regulator MYF6. Coordinated reduced expression of five members of the GIMAP gene family, which form a cluster on chromosome 7, was shown, and the GIMAP4-reduction was validated. Within the most upregulated group were genes encoding senescence/apoptosis-related proteins CDKN1A and KIAA1199 and potential regulatory factors HIF1A, TOP2A and CCDC80.</p> <p>Conclusions</p> <p>Cultured muscle cells display reductive metabolic and muscle-system transcriptome adaptations as observed in muscle atrophy and they activate tissue-remodeling and senescence/apoptosis processes.</p

    Nuclear Proteomics Uncovers Diurnal Regulatory Landscapes in Mouse Liver.

    Get PDF
    Diurnal oscillations of gene expression controlled by the circadian clock and its connected feeding rhythm enable organisms to coordinate their physiologies with daily environmental cycles. While available techniques yielded crucial insights into regulation at the transcriptional level, much less is known about temporally controlled functions within the nucleus and their regulation at the protein level. Here, we quantified the temporal nuclear accumulation of proteins and phosphoproteins from mouse liver by SILAC proteomics. We identified around 5,000 nuclear proteins, over 500 of which showed a diurnal accumulation. Parallel analysis of the nuclear phosphoproteome enabled the inference of the temporal activity of kinases accounting for rhythmic phosphorylation. Many identified rhythmic proteins were parts of nuclear complexes involved in transcriptional regulation, ribosome biogenesis, DNA repair, and the cell cycle and its potentially associated diurnal rhythm of hepatocyte polyploidy. Taken together, these findings provide unprecedented insights into the diurnal regulatory landscape of the mouse liver nucleus

    Alzheimer disease pathology and the cerebrospinal fluid proteome.

    Get PDF
    Altered proteome profiles have been reported in both postmortem brain tissues and body fluids of subjects with Alzheimer disease (AD), but their broad relationships with AD pathology, amyloid pathology, and tau-related neurodegeneration have not yet been fully explored. Using a robust automated MS-based proteomic biomarker discovery workflow, we measured cerebrospinal fluid (CSF) proteomes to explore their association with well-established markers of core AD pathology. Cross-sectional analysis was performed on CSF collected from 120 older community-dwelling adults with normal (n = 48) or impaired cognition (n = 72). LC-MS quantified hundreds of proteins in the CSF. CSF concentrations of β-amyloid 1-42 (Aβ &lt;sub&gt;1-42&lt;/sub&gt; ), tau, and tau phosphorylated at threonine 181 (P-tau181) were determined with immunoassays. First, we explored proteins relevant to biomarker-defined AD. Then, correlation analysis of CSF proteins with CSF markers of amyloid pathology, neuronal injury, and tau hyperphosphorylation (i.e., Aβ &lt;sub&gt;1-42&lt;/sub&gt; , tau, P-tau181) was performed using Pearson's correlation coefficient and Bonferroni correction for multiple comparisons. We quantified 790 proteins in CSF samples with MS. Four CSF proteins showed an association with CSF Aβ &lt;sub&gt;1-42&lt;/sub&gt; levels (p value ≤ 0.05 with correlation coefficient (R) ≥ 0.38). We identified 50 additional CSF proteins associated with CSF tau and 46 proteins associated with CSF P-tau181 (p value ≤ 0.05 with R ≥ 0.37). The majority of those proteins that showed such associations were brain-enriched proteins. Gene Ontology annotation revealed an enrichment for synaptic proteins and proteins originating from reelin-producing cells and the myelin sheath. We used an MS-based proteomic workflow to profile the CSF proteome in relation to cerebral AD pathology. We report strong evidence of previously reported CSF proteins and several novel CSF proteins specifically associated with amyloid pathology or neuronal injury and tau hyperphosphorylation

    Circadian and Feeding Rhythms Orchestrate the Diurnal Liver Acetylome.

    Get PDF
    Lysine acetylation is involved in various biological processes and is considered a key reversible post-translational modification in the regulation of gene expression, enzyme activity, and subcellular localization. This post-translational modification is therefore highly relevant in the context of circadian biology, but its characterization on the proteome-wide scale and its circadian clock dependence are still poorly described. Here, we provide a comprehensive and rhythmic acetylome map of the mouse liver. Rhythmic acetylated proteins showed subcellular localization-specific phases that correlated with the related metabolites in the regulated pathways. Mitochondrial proteins were over-represented among the rhythmically acetylated proteins and were highly correlated with SIRT3-dependent deacetylation. SIRT3 activity being nicotinamide adenine dinucleotide (NAD) &lt;sup&gt;+&lt;/sup&gt; level-dependent, we show that NAD &lt;sup&gt;+&lt;/sup&gt; is orchestrated by both feeding rhythms and the circadian clock through the NAD &lt;sup&gt;+&lt;/sup&gt; salvage pathway but also via the nicotinamide riboside pathway. Hence, the diurnal acetylome relies on a functional circadian clock and affects important diurnal metabolic pathways in the mouse liver

    Urinary metabolic insights into host-gut microbial interactions in healthy and IBD children.

    Get PDF
    To identify metabolic signatures in urine samples from healthy and inflammatory bowel disease (IBD) children. We applied liquid chromatography and gas chromatography coupled to targeted mass spectrometry (MS)-based metabolite profiling to identify and quantify bile acids and host-gut microbial metabolites in urine samples collected from 21 pediatric IBD patients monitored three times over one year (baseline, 6 and 12 mo), and 27 age- and gender-matched healthy children. urinary metabolic profiles of IBD children differ significantly from healthy controls. Such metabolic differences encompass central energy metabolism, amino acids, bile acids and gut microbial metabolites. In particular, levels of pyroglutamic acid, glutamic acid, glycine and cysteine, were significantly higher in IBD children in the course of the study. This suggests that glutathione cannot be optimally synthesized and replenished. Whilst alterations of the enterohepatic circulation of bile acids in pediatric IBD patients is known, we show here that non-invasive urinary bile acid profiling can assess those altered hepatic and intestinal barrier dysfunctions. The present study shows how non-invasive sampling of urine followed by targeted MS-based metabonomic analysis can elucidate and monitor the metabolic status of children with different GI health/disease status
    corecore