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Abstract

Background: While insulin resistance (IR) is associated with specific metabolite signa-

tures in adults, there have been few truly longitudinal studies in healthy children,

either to confirm which abnormalities are present, or to determine whether they pre-

cede or result from IR. Therefore, we investigated the association of serum metabo-

lites with IR in childhood in the Earlybird cohort.

Methods: The Earlybird cohort is a well-characterized cohort of healthy children with

annual measurements from age 5 to 16 years. For the first time, longitudinal associa-

tion analyses between individual serum metabolites and homeostatic model assess-

ment (HOMA) of insulin resistance (HOMA-IR) have been performed taking into

account the effects of age, growth, puberty, adiposity, and physical activity.

Results: IR was higher in girls than in boys and was associated with increasing body

mass index (BMI). In longitudinal analysis IR was associated with reduced concentra-

tions of branched-chain amino acids (BCAA), 2-ketobutyrate, citrate and

3-hydroxybutyrate, and higher concentrations of lactate and alanine. These findings

demonstrate the widespread biochemical consequences of IR for intermediary

metabolism, ketogenesis, and pyruvate oxidation during normal child growth and

development.

Conclusions: Longitudinal analysis can differentiate metabolite signatures that pre-

cede or follow the development of greater levels of IR. In healthy normal weight chil-

dren, higher levels of IR are associated with reduced levels of BCAA, ketogenesis,

and fuel oxidation. In contrast, elevated lactate concentrations preceded the rise in

IR. These changes reveal the metabolite signature of insulin action during normal

growth, and they contrast with previous findings in obese children and adults that

represent the consequences of IR and obesity.
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1 | INTRODUCTION

Epidemic obesity has resulted in a rapid increase of type 2 diabetes

(T2D) in children.1-3 However, the pathways linking childhood obe-

sity to T2D remain poorly characterized, and prediction and preven-

tion of T2D are unfulfilled aspirations. Although insulin resistance

(IR) is important in the pathophysiology of T2D, the causes of IR in

children are complex, because they include both normal physiologi-

cal changes and weight gain. Therefore, there is a need to under-

stand the interplay of normal physiological factors and

pathophysiological parameters that contribute to IR in children. Met-

abolic phenotyping is now a well-established approach to character-

izing complex metabolic processes, and investigating the molecular

origins of IR in children.4

Metabolic phenotypes, or metabotypes, reflect systemic influ-

ences on molecular regulatory processes, including dietary and

physiological factors.5 In children, longitudinal analysis of

metabotypes has the potential to unravel the complex biochemis-

try of puberty, molecular disturbances associated with IR, and to

identify individuals at risk of T2D.6,7 In previous cross-sectional

studies of adults, branched chain and aromatic amino acid

metabotypes were consistently and positively associated with IR,

prediabetes and T2D, independently of adiposity.8 Furthermore, a

meta-analysis of eight prospective studies showed that each

study-specific SD difference in isoleucine, leucine, and tyrosine

was associated with a 36% higher risk of T2D. Similarly, valine and

phenylalanine were associated with 35% and 26% increased risk of

T2D, while glycine and glutamine were inversely associated with

T2D risk. These associations have led to the suggestion that

derangement of branched-chain amino acid (BCAA) catabolism may

be an important mechanism in the pathway to IR.

In order to test such hypotheses, longitudinal studies in children

are necessary. However, there have been very few truly longitudinal

studies in children. A review of 10 studies in children found that

BCAA, aromatic amino acids (AAA), and acylcarnitines were associated

with IR, and BCAA and tyrosine were associated with future meta-

bolic risk.9 However, most of these studies were cross-sectional in

predominantly obese children. In contrast, there has been a lack of

formal longitudinal studies of normal weight children. Therefore, it

remains uncertain whether the metabolic changes associated with IR

in reported studies represent cause or effect.

The EarlyBird study is a longitudinal cohort study of healthy chil-

dren, with annual clinical, anthropometric, and physiological assess-

ment from age 5 to 16 years. This study provides an ideal opportunity

for a detailed longitudinal metabonomic analysis investigating how

metabotypes relate to IR during childhood and adolescence. To our

knowledge, this is the first time the association between individual

metabolites and IR (homeostaticmodel assessment [HOMA] of insulin

resistance [HOMA-IR]) in childhood has been investigated in a

detailed longitudinal study, taking into account the effects of critical

covariates such as age, growth, puberty, adiposity, and physical

activity.

2 | METHODS

2.1 | Study population

We conducted the study in accordance with the ethical guidelines of

the Declaration of Helsinki II; ethics approval was granted by the

Plymouth Local Research Ethics Committee (1999), and parents gave

written consent and children verbal assent. The EarlyBird Diabetes

Study incorporates a 1995/1996 birth cohort recruited in 2000/2001

when the children were 5 years old (307 children, 170 boys).10 The

collection of data from the EarlyBird cohort is composed of several

clinical and anthropometric variables measured on an annual basis

from the age of 5 to the age of 16. Details on the measurement

methods are reported hereafter and in Supplementary Materials.

A first study was undertaken on 40 participants from age 5-14 years

(Study 1), and this was then extended to a full analysis of 150 participants

from age 5 to 16 (Study 2). In Study 1, 40 subjects were chosen on the

basis of having a complete set of samples available for analysis at each

time-point between 5 and 14 years (20 boys), having been stratified by

IR (1st and 4th quartile) at 5 and 14 years. This study was designed as a

pilot study to explore whether IR was associated with specific

metabotypes, HOMA-IR being used as an indicator of deterioration of

glucose control. The Study 2 aims at replicating the observations in

higher number of children, and extending the analysis till the age of

16 years when samples became available. In Study 2, subjects were pur-

posively selected to include all children who had shown impaired fasting

glucose (at one or more time-points during the course of the childhood

as reported previously11), and gender-matched normoglycemic children,

resulting in a total of 150 participants. Out of the 55 children who had

shown impaired fasting glucose in this subset, seven had a first degree

relative with T2D or T1D. Impaired fasting glycaemia has been selected

as an objective criterion to select children with an additional risk for

future diabetes. This resulted in the selection of 105 boys and 45 girls. In

Study 2, children had completed their visits at year 15 and 16, providing

a complete view on IR and glucose variations in adolescence. Twenty

children were common among the two studies.

2.2 | Clinical and anthropometric assessments

IR was determined each year from fasting glucose (Cobas Integra

700 analyzer; Roche Diagnostics, Basel, Switzerland) and insulin (DPC

IMMULITE, Siemens, California) (cross-reactivity with proinsulin, 1%)

using the homeostasis model assessment program,12,13 which has been

validated in children.14 BMI was derived from direct measurement of

height (Leicester Height Measure; Child Growth Foundation, London,

UK) and weight (Tanita Solar 1632 electronic scales), performed in blind

duplicate and averaged. BMI z-scores were calculated from the British

1990 standards.15 Moderate to vigorous physical activity (MVPA) was

measured annually from 5 years by accelerometry (Acti-Graph, Actigraph,

model7164, Computer Science and Applications Inc, Shalimar, Florida).16

Children were asked to wear the accelerometers for seven consecutive

days at each annual follow-up visit, and only recordings that captured at

least 4 days were used. Pubertal timing was evaluated by means of age
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at peak height velocity (APHV), determined as the tangential velocity at

the middle time point of three consecutive height measurements taken

6 months apart. Data are reported in Tables 1 and 2. Peripheral blood

was collected annually after an overnight fast, blood serum were stored

at −80�C.

2.3 | Metabonomics

Serum samples collected from each child at every age between 5 and

16 years old were subjected to metabonomics. For technical feasibility

and to ensure optimal data reproducibility for cohort analysis, a

threshold of 1800 blood serum samples (eg, 150 different subjects)

was determined. Metabolic profiling was carried out by means of Pro-

ton nuclear magnetic resonance spectroscopy (1H NMR) spectros-

copy, as reported previously.6 Briefly, 400 μL of blood serum were

mixed with 200 μL of deuterated phosphate buffer solution 0.6 M

KH2PO4.
1H NMR metabolic profiles of serum samples were acquired

with a Bruker Avance III 600 MHz spectrometer equipped with a

5 mm cryoprobe at 310 K (Bruker Biospin, Rheinstetten, Germany)

and processed using TOPSPIN (version 2.1; Bruker Biospin) software

package. Based on an internal database of reference compounds, rep-

resentative signals of metabolites were integrated. The signals are

expressed in an arbitrary unit corresponding to a peak area normalized

to total metabolic profiles. 1H NMR spectroscopy being a quantitative

methods, metabolite peak area are proportional to metabolite concen-

trations, and thus their changes are representative of absolute change

in metabolite concentration in the serum. This metabonomics

approach covers major metabolic pathways, including lipoproteins,

amino acids, carboxylic acids, and central energy metabolism in a

highly reproducible manner across more than 1700 serum samples. In

particular, 1H-NMR spectrum of human blood serum enables the

monitoring of signals related to lipoprotein bound fatty acyl groups

found in triglycerides, phospholipids, and cholesteryl esters, together

with peaks from the glyceryl moiety of triglycerides and the choline

head group of phosphatidylcholine. In relation to technological devel-

opments, the analysis of Study 2 resulted in more sensitive 1H NMR

data and detection of a slightly greater number of low abundant

metabolites.

2.4 | Statistical analysis

The distribution of the outcome variable, IR, was skewed and so log-

transformed (Log IR) while each metabolite was transformed to a z-

score (ie, standardized with mean of 0 and SD of 1) for analysis. For

both Study 1 and Study 2, mixed effects modeling was used to assess

the association between individual metabolites and IR (HOMA-IR),

taking into account age, BMI z-scores, and physical activity. Control-

ling for maturational and growth status is crucial in life course studies,

and APHV is a key measure of maturity that was also taken into

account. Random intercepts were included as well as age (categorized

to allow for non-linear change in IR over time), gender, BMI z-score,

APHV, MVPA (number of minutes spent in moderate-vigorous physi-

cal activity), and individual metabolites (in separate models) as fixed

effects. Unadjusted and Bonferroni adjusted P-values are reported in

Tables 3 and 4. Because insulin was log transformed the

exponentiated coefficients represent the expected percent change in

IR associated with a unit (SD) change in metabolite. Because one

objective was to find replicated associations between studies, the

analysis conducted in Study 2 has been focused only on serum metab-

olites previously detected in Study 1 serum samples. Only succinate

was not consistently detected in all samples from Study 2 and there-

fore analysis not repeated. Results obtained on metabolites only

detected in Study 2 are provided in Supplementary Table 1.

TABLE 1 Characteristics of the cohort at 5y and 14y by gender

Boys Girls

Age (years) 5y 5.1 (4.8-5.3) 4.8 (4.7-5.0)

14y 13.9 (13.6-14.1) 13.8 (13.7-14.1)

BMI z-scores 5y −0.04 (−0.50-0.72) 0.40 (0.04-0.80)

14y 0.43 (−0.13-1.29) 0.78 (−0.05-1.48)

Moderate-vigorous

physical activity

(minutes/day)

5y 46.1 (34.1-67.1) 55.1 (44.9-62.5)

14y 52.4 (29.7-77.0) 42.7 (29.3-51.4)

Age at peak height

velocity (years)

13.4 (12.9-13.8) 11.9 (11.1-12.5)

IR (HOMA2-IR) 5y 0.47 (0.37-0.84) 0.85 (0.34-1.02)

14y 1.25 (0.56-1.63) 0.98 (0.78-2.23)

Note: Data are median (interquartile range).

Abbreviations: BMI, body mass index; HOMA-IR, homeostatic model

assessment of insulin resistance; IR, insulin resistance.

TABLE 2 Characteristics of the main cohort at 5y, 14y, and 16y
by gender

Boys Girls

Age (years) 5y 4.8 (4.7–5.0) 4.9 (4.8-5.1)

14y 13.8 (13.6-14.0) 13.9 (13.8-14.0)

16y 15.8 (15.6-16.0) 15.9 (15.8-16.1)

BMI z-scores 5y 0.09 (−0.48-0.80) 0.36 (−0.49-1.16)

14y 0.32 (−0.64-0.98) 0.85 (0.21-1.60)

16y 0.44 (−0.31-1.32) 0.70 (0.03-1.60)

Moderate-vigorous

physical activity

(minutes/day)

5y 53.1 (41.6-64.1) 40.1 (31.9-51.6)

14y 44.4 (30.7-63.14) 35.3 (18.4-50.4)

16y 43.9 (22.5-58.6) 27.0 (16.8-40.9)

Age at peak height

velocity (years)

13.0 (12.8-13.4) 11.6 (10.8-12.3)

IR (HOMA2-IR) 5y 0.49 (0.22-0.74) 0.76 (0.60-1.00)

14y 1.00 (0.79-1.47) 1.47 (1.00-1.70)

16y 0.70 (0.23-1.16) 0.84 (0.23-1.18)

Note: Data are median (interquartile range).

Abbreviations: BMI, body mass index; HOMA-IR, homeostatic model

assessment of insulin resistance; IR, insulin resistance.
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TABLE 3 Estimates and P-values from mixed effects models examining the association between metabolites and IR in Study 1 (n = 40)

Variable
ID Metabolites

1H NMR chemical shift of
the integrated signal (ppm) Coef SE

P-value
(unadjusted)

Bonferroni-
adjusted P-
value

1 Lipid (mainly HDL, fatty acid CH3 moieties) 0.83 −0.052 0.03 .08266 1.00

2 Lipid (mainly LDL, fatty acid CH3 moieties) 0.87 0.056 0.028 .04781 1.00

3 Leucine 0.96 −0.103 0.027 .00015 .01

4 Isoleucine 1.01 −0.045 0.026 .08713 1.00

5 Valine 1.05 −0.107 0.026 4.6E-05 .003

6 2-Ketobutyrate 1.07 −0.089 0.037 .01695 1.00

7 3-D-hydroxybutyrate 1.18 −0.106 0.027 .00013 .01

8 Lipid (mainly HDL, fatty acid CH3 moieties) 1.23 −0.012 0.03 .68734 1.00

9 Lipid (mainly LDL, fatty acid [CH2]n moieties) 1.27 0.087 0.028 .00227 .13

10 Lactate 1.33 0.067 0.025 .00719 .42

11 Alanine 1.48 0.085 0.024 .00044 .03

12 Lipid (mainly VLDL, fatty acid [CH2] moieties) 1.5 0.043 0.023 .06153 1.00

13 Arginine 1.71 −0.077 0.029 .00751 .44

14 Lysine 1.76 −0.024 0.023 .28897 1.00

15 Acetate 1.91 −0.01 0.025 .69837 1.00

16 N-acetyl proteins 2.03 0.024 0.028 .39399 1.00

17 Glutamate 2.12 −0.034 0.025 .17895 1.00

18 3-D-hydroxybutyrate 2.3 −0.084 0.024 .0004 .02

19 Glutamate 2.35 0.027 0.026 .31137 1.00

20 Glutamine 2.45 −0.04 0.026 .12765 1.00

21 Citrate 2.66 −0.132 0.028 3E-06 .0002

22 Asparagine 2.85 −0.028 0.025 .26311 1.00

23 Trimethylamine 2.87 −0.06 0.024 .01141 .67

24 Dimethylglycine 2.93 −0.046 0.026 .08207 1.00

25 Lysine 3 −0.06 0.027 .02559 1.00

26 Creatine 3.02 −0.095 0.029 .0011 .06

27 Citrulline 3.14 −0.081 0.032 .01143 .67

28 Phospholipids 3.21 −0.131 0.031 3.8E-05 .002

29 Glucose 3.25 −0.004 0.026 .88223 1.00

30 Trimethylamine-N-Oxide 3.25 −0.028 0.029 .32906 1.00

31 Taurine 3.29 −0.008 0.029 .78819 1.00

32 Proline 3.34 0.03 0.027 .26484 1.00

33 Glycine 3.57 0.007 0.03 .81812 1.00

34 Creatine 3.93 −0.058 0.033 .08599 1.00

35 Serine 3.96 −0.002 0.03 .93441 1.00

36 Threonine 4.26 0.013 0.023 .56905 1.00

37 Glucose 5.23 −0.003 0.025 .89908 1.00

38 Histidine 7.06 −0.049 0.026 .0588 1.00

39 Tyrosine 7.2 −0.005 0.026 .8485 1.00

40 Histidine 7.83 −0.057 0.027 .03601 1.00

41 Formate 8.45 −0.003 0.025 .91772 1.00

42 Succinate 2.39 −0.042 0.025 .09536 1.00

Note: Coef: Coefficient indicating the directions of the associations between the metabolite and Log IR overtime. Because insulin was log transformed the

exponentiated coefficients represent the expected percent change in insulin resistance associated with a unit (SD) change in metabolite. SE: standard error

for the coefficient.

Abbreviation: IR, insulin resistance; LDL, low density lipoproteinsl; VLDL, very low density lipoproteins.
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TABLE 4 Estimates and P-values from mixed effects models examining the association between metabolites and IR in Study 2 (n = 150)

Variable
ID Metabolites

1H NMR chemical shift of the
integrated signal (ppm) Coef SE

P-value
(unadjusted)

Bonferroni
adjusted P-
value

1 Lipid (mainly HDL, fatty acid CH3 moieties) 0.83 −0.059 0.024 .012 .96

2 Lipid (mainly LDL, fatty acid CH3 moieties) 0.87 0.108 0.023 <.0001 .0006

3 Leucine 0.96 −0.121 0.019 <.0001 <.0001

4 Isoleucine 1.01 −0.05 0.021 .0178 1.00

5 Valine 1.05 −0.114 0.02 <.0001 <.0001

6 2-Ketobutyrate 1.07 −0.071 0.019 .0003 .024

7 3-D-hydroxybutyrate 1.18 −0.092 0.018 <.0001 <.0001

8 Lipid (mainly HDL, fatty acid CH3 moieties) 1.23 0.052 0.021 .0156 1.00

9 Lipid (mainly LDL, fatty acid [CH2]n moieties) 1.27 0.133 0.023 <.0001 .00093

10 Lactate 1.33 0.101 0.019 <.0001 <.0001

11 Alanine 1.48 0.156 0.019 <.0001 <.0001

12 Lipid (mainly VLDL, fatty acid [CH2] moieties) 1.5 −0.12 0.022 <.0001 <.0001

13 Arginine 1.71 −0.116 0.021 <.0001 <.0001

14 Lysine 1.76 −0.112 0.019 <.0001 <.0001

15 Acetate 1.91 −0.088 0.028 .0016 .128

16 N-acetyl proteins 2.03 −0.046 0.022 .0398 1.00

17 Glutamate 2.12 −0.112 0.021 <.0001 <.0001

18 3-D-hydroxybutyrate 2.3 −0.118 0.019 <.0001 <.0001

19 Glutamate 2.35 0.042 0.024 .0847 1.00

20 Glutamine 2.45 −0.118 0.022 <.0001 <.0001

21 Citrate 2.66 −0.188 0.021 <.0001 <.0001

22 Asparagine 2.85 −0.115 0.021 <.0001 <.0001

23 Trimethylamine 2.87 −0.123 0.022 <.0001 <.0001

24 Dimethylglycine 2.93 −0.118 0.021 <.0001 <.0001

25 Lysine 3 −0.139 0.02 <.0001 <.0001

26 Creatine 3.02 −0.142 0.023 <.0001 <.0001

27 Citrulline 3.14 −0.137 0.022 <.0001 <.0001

28 Phospholipids 3.21 −0.066 0.024 .0067 .536

29 Glucose 3.25 −0.017 0.023 .4585 1.00

30 Trimethylamine-N-Oxide 3.25 −0.052 0.021 .0156 1.00

31 Taurine 3.29 −0.049 0.02 .0146 1.00

32 Proline 3.34 0.032 0.022 .1442 1.00

33 Glycine 3.57 −0.08 0.026 .0023 .184

34 Creatine 3.93 −0.121 0.025 <.0001 .00013

35 Serine 3.96 −0.134 0.022 <.0001 <.0001

36 Threonine 4.26 −0.026 0.017 .1129 1.00

37 Glucose 5.23 −0.008 0.022 .7038 1.00

38 Histidine 7.06 −0.136 0.021 <.0001 <.0001

39 Tyrosine 7.2 −0.008 0.02 .6885 1.00

40 Histidine 7.83 −0.124 0.022 <.0001 <.0001

41 Formate 8.45 NA NA NA NA

42 Succinate 2.39 NA NA NA NA

Note: Variable corresponding to succinate could not be integrated in Study 2. Coef: Coefficient indicating the directions of the associations between the

metabolite and Log IR overtime. Because insulin was log transformed the exponentiated coefficients represent the expected percent change in insulin

resistance associated with a unit (SD) change in metabolite. SE: standard error for the coefficient.

Abbreviation: IR, insulin resistance; LDL, low density lipoproteins; VLDL, very low density lipoproteins.
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To assess further which IR-associated metabolite may be an early

indicator of IR trajectories, we stratified the Study 2 population

according to low or high IR status over the 14-16 year age range.

Arbitrarily, the 91st centile for the HOMA-IR distribution was

employed as a threshold to define children with high IR status, similar

to the commonly used threshold for BMI z-score stratification of

weight status. Here, mixed effects modeling taking into account

covariates as described above, was used to assess the association

between specific metabolites and IR groups. Mixed effects modeling

not taking into account covariates are reported as Supplementary

Materials. Modeling was carried out in R software (www.R-project.

org) using the lmer function in the package lme417 and P-values calcu-

lated using the Satterthwaite approximation implemented in the

lmerTest package.18 Cross-sectional association between metabolites

and IR was assessed using Pearson's correlations at each age

(Supplementary Materials). Similarly, a year-on-year association of the

metabolites was assessed using Pearson's correlations (Supplementary

Materials).

3 | RESULTS

3.1 | Demographics

Clinical and anthropometrics characteristics of the children in Study

1 at 5 and 14 years are summarized in Table 1 and those in Study 2 at

5, 14, and 16 years in Table 2. For both genders there HOMA-IR

index decreased until around 8 years (Supplementary Figures 1a and

2a), which was followed by an increase through puberty, this trend

being dependent on the time of peak height velocity (age*APHV

interaction P < .001, Supplementary Figures 1b and 2b). IR was also

positively associated with BMI z-scores (P < .001).

3.2 | HOMA-IR and serum metabolite associations in
childhood

In Study 1, several metabolites including amino acids, organic acids,

and lipids showed a significant positive association with HOMA-IR in

longitudinal models, independently of BMI z-scores, physical activity

and APHV, and after multiple testing correction (Table 3). The out-

comes are repeated in the analysis conducted in Study 2 (Table 4).

Additional cross-sectional correlations between metabolites and

HOMA-IR, and year-to-year metabolite correlations are reported in

Supplementary Tables 2 and 3, for Study 2.

3.2.1 | Branched-chain amino acid metabolism

In Study 1, mixed effects models showed an inverse association of

valine and leucine with Log IR (P < .001), and a trend between isoleu-

cine and Log IR (P = .087). In Study 2, the inverse association of valine

and leucine with Log IR was confirmed (P < .001), and a weak inverse

association between isoleucine and Log IR was noted (P = .02). Cross-

sectional associations were variable according to time-point

(Supplementary Table 2). Cross-sectional correlations indicated an

inverse association between valine and Log IR, significant at 7, 11,

and 12 years; and with leucine at 7 and 9 years only. There were sta-

tistically significant correlations between isoleucine and Log IR, first

negative at 9 years, and then positive at 13 and 15 years. For leucine

and valine, there was also a statistically significant gender interaction

indicating that the observed association between these BCAA and

Log IR was dependent upon gender. Furthermore, year-to-year corre-

lations for valine, leucine, and isoleucine ranged from r = 0.06-0.58,

0.04-0.64, and 0.17-0.68 respectively, indicating that within-child

tracking of the BCAA varied with age (Supplementary Table 3). There

was little change over time in valine, leucine, and isoleucine.

Mixed effects modeling also captured the inverse association

between 2-ketobutyrate and Log IR in Study 1 (P < .01) and Study

2 (P < .001). The cross-sectional correlations between 2-ketobutyrate

and Log IR were statistically significant at 7, 9, and 11 years.

3.2.2 | Central energy-related metabolites

In Study 1 and Study 2, mixed effects modeling described statistically

significant inverse associations of citrate and 3-D-hydroxybutyrate

with Log IR, and positive associations of lactate and alanine with Log

IR (Tables 3 and 4). Cross-sectional correlation analyses revealed neg-

ative associations at each time point between citrate and Log IR from

age 5 to 16, and between 3-D-hydroxybutyrate and Log IR from age

5 to 15 (Supplementary Table 2). In addition, Log IR was positively

correlated with alanine at each time point from age 5 to 9, 11 and

12 years. Lactate was positively associated with Log IR at 7 years,

9 years, and each time point from age 11 to 16.

Furthermore, year-to-year correlations for alanine, lactate, 3-D-

hydroxybutyrate and citrate ranged from r = 0.01-0.60, 0.12-0.56,

0.24-0.47, and 0.27-0.66 respectively, indicating that within-child

tracking of the metabolite varied with age (Supplementary Table 3).

3.2.3 | Lipid related metabolites associated with IR

In both Study 1 and Study 2, signals derived from the methyl fatty acyl

groups in phospholipids containing choline showed inverse associa-

tions with Log IR, whereas signals derived from the methyl fatty acyl

groups in low density lipoproteins (LDL) particles showed positive

associations with Log IR. Cross-sectional associations between phos-

pholipids and Log IR were inverse and statistically significant from age

7 to 16 years, whereas those between Log IR and fatty acyl groups in

LDL particles were positive and statistically significant between 7 and

14 years. Furthermore, year-to-year correlations for phospholipids

were very high ranging from r = 0.46-0.78 (Supplementary Table 3).

3.2.4 | Amino acid metabolism

Mixed effects modeling identified significant inverse associations

between histidine, creatine, arginine, citrulline, and lysine with Log IR

in Study 1 and Study 2. Each metabolite also showed inverse cross-

sectional correlations with Log IR. Correlations were significant for

histidine between 9 and 13 years; creatine at 7, 9, 11, and 12 years;
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arginine at 7, 8, and 12 years; citrulline between 8 and 16 years, and

lysine between 7 and 16 years. Furthermore, year-to-year correlations

for histidine and creatine were ranging from r = 0.19-0.70 and

r = 0.25-0.71, respectively (Supplementary Table 3).

3.3 | Metabolites according to high IR status (91st
centile) at 14-16 years

For each metabolite showing a significant longitudinal association

with Log IR, we investigated whether their serum concentrations were

informative for high IR status over the 14-16-year age range. Arbi-

trarily, the 91st centile for the HOMA-IR distribution was selected as

a threshold to define high IR status. Mixed effects modeling not

corrected for covariates (gender, age, BMI z-scores, physical activity,

and APHV) identified a significant positive association between lac-

tate and Log IR (P < .001), and fatty acyl groups in LDL (P < .005). Fur-

ther, a significant negative association was found between Log IR and

very low density lipoproteins (VLDL) particles (P = .03), acetate

(P = .006), citrate (P = .006), asparagine (P = .002), trimethylamine

(P = .001), dimethylamine (P = .004), lysine (P = .005), citrulline

(P = .007), glycine (P = .006), histidine (P = .015), and 3-D-

hydroxybutyrate (P = .04). Fat mass (waist circumference) was also a

statistically significant variable which increased in the high Log IR

group over time (P = 2.610−5). However, when correcting for main

covariates, only the association between lactate and Log IR remained

significant (Supplementary Table 4). BMI z-score was an important

F IGURE 1 Selected metabolites from 5y to 16y according to classification of IR between 14y and 16y (at least one occurrence of insulin
resistance ≥91st centile)
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covariate influencing the other observed associations. The temporal

profiles of selected parameters are reported in Figure 1 and supple-

mentary Figure 3.

4 | DISCUSSION

In this uniquely well-characterized cohort of healthy children, relative

increases in IR are accompanied by a complex molecular signature in

central energy pathways, amino acid and fatty acid metabolism. This

suggests that higher levels of IR are associated with age-dependent

molecular changes throughout normal growth and adolescence. The

findings add to, contrast with, and significantly extend the existing

literature.

Previous studies observed positive associations between BCAA

concentrations and IR. In this study, Log IR was inversely associated

with BCAA and 2-ketobutyrate. This difference may be because most

previous studies were undertaken in adults.19-23 In contrast, a series

of relatively small studies have been reported in children,24-34 and

with limited exceptions most of these were cross-sectional. In the

mainly cross-sectional studies of obese children included in the sys-

tematic review of Zhao et al, IR was found to be positively associated

with BCAA.9 Notwithstanding the limitations of these studies, the

associations resemble those found in adults.19-22,35 Therefore, our

findings in mainly normal weight healthy children may differ from

studies in overweight and obese children and adults. In our study, only

when stratifying children according to a 91st centile of HOMA-IR at

14 to 16 years of age, BCAA levels tended to be positively associated

with Log IR, yet not significantly. As pointed out by McCormack,30

obesity may strongly influence BCAA levels by multiple mechanisms

(over nutrition, protein, and lipid metabolism) associated with IR. In

normal weight children, however, metabolism of BCAA may be differ-

ent due to lower insulin levels and the predominant effects of normal

growth and development.

Several unifying models have been proposed to explain associa-

tions between multiple metabolites and IR. Adams postulated a pivotal

role for the mitochondrial enzyme Branched Chain Keto acid Dehy-

drogenase (BCKD) in the generation of elevated BCAA and branched

chain keto acids in IR and obesity.35 Furthermore, impairment of

BCKD activity has been proposed as an explanation for elevated con-

centrations of aromatic and sulfated amino acids, 3-D-

hydroxybutyrate and 2-ketobutyrate, all of which have also been

observed in individuals with IR and obesity.35 In our study, 3-D-

hydroxybutyrate and 2-ketobutyrate were inversely associated with

IR. However, phenylalanine, methionine, and cysteine could not be

reliably quantified, and there was no significant association between

tyrosine and Log IR. These observations suggest that metabolite-IR

associations are different in insulin sensitive healthy children with

normal body fat, and/or they change during childhood, depending on

age, and changes in weight and IR. Many of the previously reported

metabolite associations are likely to be consequences of weight gain

and/or IR. The present findings are consistent with the proposal that

healthy insulin sensitive children have intact BCKD activity and

oxidize BCAA efficiently, whereas weight gain and IR impair BCKD

activity and result in elevated BCAA.

The present study also suggests that IR is associated with several

other disturbances in central energy pathways. Insulin resistance is

associated with impaired metabolite flux through the Krebs cycle.35

Consistent with this, we found that citrate was inversely associated

with log IR. Decreased citrate levels may indicate a decreased contri-

bution of fatty acids to the pool of acetyl-coA entering the Krebs

cycle. We also observed that reduced 3-D-hydroxybutyrate concen-

trations were associated with Log IR, perhaps indicating decreased

lipolysis and fatty acid oxidation. Recently, Mastrangelo et al observed

reduced 3-D-hydroxybutyrate in obese prepubertal children with IR,36

an observation perhaps attributable to hyperinsulinemia. It is possible

to speculate that a reduced capacity to generate ketones might have

significant long term implications for body weight regulation.

In addition, in longitudinal analysis higher alanine and lactate levels

were associated with Log IR throughout childhood. Such a signature

also occurs in obese prepubertal children with IR.29 This pattern may

reflect enhanced mitochondrial pyruvate oxidation secondary to

reduced fatty acid oxidation under conditions of lower intra-

mitochondrial NADH/NAD+ and acetyl-CoA. This observation also

suggests IR is associated with increased flux through the Cahill and

Cori cycles in the liver and muscle. In particular, subjects in the 91st

centile of HOMA-IR in adolescence exhibited increasing lactate levels

from 7 years of age, suggesting that elevated lactate levels might be

an early precursor of IR.

Lastly, this analysis identified novel negative associations of his-

tidine, lysine and arginine concentrations with Log IR. Interestingly,

subjects in the 91st centile of HOMA-IR adolescence exhibited

lower histidine levels at ages 9, 13, 14, and 15 years, which cor-

responded to the period where Log IR trajectories diverged between

groups. When stratifying children at the 91st centile of HOMA-IR at

14 to 16-year of age, histidine levels were lower in children with

higher Log IR at ages 9, 13, 14, and 15. However, the association

was not significant after adjustment for BMI z-score, suggesting it is

a weight-related effect. Because BMI z-scores increase from child-

hood to adolescence, and this is a factor influencing IR, it is not sur-

prising that metabolic signatures are influenced by body

composition. Histidine has been identified previously as a marker of

IR in obese adults, with potential roles in inflammation and oxidative

stress,36 especially in obese adult women with the metabolic syn-

drome.37 Histidine supplementation has also been shown to reduce

IR,38 possibly by protecting against oxidative stress in adipose tissue,

stimulation of adiponectin secretion from adipocytes, and improving

release of fatty acids from adipocytes during lipolysis.38 The reason

for the inverse association of histidine with IR in this study remains

uncertain, but it is possible that low histidine levels might contribute

to weight-related changes in IR and oxidative stress. Furthermore,

the anthropometric and metabolic changes diverge between groups

around the APHV, indicating puberty as a critical period shaping the

molecular phenotype.

This study, as well as all of the previous studies of children

reported in the literature, has certain limitations. These include

HOSKING ET AL. 839



subject selection, limited sample sizes, limited phenotypic data on

growth. However, a significant strength of EarlyBird is that it is a truly

longitudinal study of a cohort of healthy children, with detailed annual

biochemical and phenotypic measurements from age 5 to 16 years.

Importantly, the majority of the children were of normal weight and

the IR observed was within the normal physiological range. Therefore,

the EarlyBird study is not expected to reveal the consequences of

more severe obesity or IR, rather it provides insights into the begin-

ning of these conditions. Our observations are subject to replication,

especially for the BCAA results which show a negative relationship

with IR. The inclusion of healthy children who were of normal weight

and insulin sensitivity reduces the variance of IR in the study popula-

tion, and hence differences may be more difficult to demonstrate. The

HOMA method may also have certain limitations as a measure of IR,

although it has been shown to correlate highly with clamp-derived

measurements.14 Finally, the duration of follow-up, although 10 years

long, may not yet be sufficient to detect the long-term emergence of

obesity and IR. Therefore, longer term follow-up of the cohort will

provide further opportunities to examine the predictive value of these

biomarkers.

In conclusion, this unique longitudinal study of healthy, predomi-

nantly normal weight, children shows that IR is associated with a

characteristic molecular phenotype, including lower levels of BCAA,

Krebs cycle intermediates and ketogenesis, and increased activity of

Cori and Cahill cycles, while elevated lactate concentrations were

found to precede IR. These findings reveal the broad functional rela-

tionship between insulin action and multiple pathways of energy

metabolism during normal child growth and development. Moreover,

the directions of observed associations suggest that most previously

reported findings, including elevated BCAA concentrations in obese

children, are consequences of IR and obesity. In the context of child-

hood obesity, however, impaired oxidation of BCAA, glucose and

fatty acids, and reduced ketogenesis, are all likely to be maladaptive,

and liable to perpetuate the obese condition and predispose to dia-

betes. The findings also suggest that reduced concentrations of his-

tidine might be of pathophysiological significance. Finally, Neel

postulated that normal insulin sensitivity evolved to maintain effi-

cient metabolic homeostasis and adaptation, whereas modern-day

obesity resulted in IR and hyperinsulinemia, which were maladaptive

and predisposed to diabetes.39 Our findings broadly support this

hypothesis.
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