117 research outputs found

    Structure-Property Relationship in Ionomer Membranes

    Get PDF
    Perfluorosulfonic acid (PFSA) ionomer membranes are ion-conducting polymers with high water sorption capacity and thermo-mechanical stability. The morphology of PFSA changes during sorption affecting the mechanical and physical properties of the membrane. In this work, we investigate the structure-property relationship in swollen PFSA membranes using three proposed nanostructural descriptions and determine Young\u27s modulus of the membrane at a wide range of temperatures (−20–85°C) and water volume fractions (0–0.5) for these configurations. Comparing the mechanics-based models with experimental data we propose that ion-rich water domains in PFSA membrane are spherical at low water content, spherical with connecting channels at intermediate water content and cylindrical at high water contents. Furthermore, our findings indicate that the scaling behavior for Young\u27s modulus of PFSA ionomers is similar to that of aerogels. This suggests, from a mechanics perspective, that aerogels and ionomers may have a similar interconnected porous nanostructure where some solid regions do not contribute to the mechanical load-bearing capacity

    Aspects of Fatigue Failure Mechanisms in Polymer Fuel Cell Membranes

    Get PDF
    The swelling-driven fatigue behavior of polymer fuel cell membranes during relative humidity (RH) cycling is investigated. In particular, swelling-induced membrane stresses are obtained from a numerical model simulating fuel cell RH cycle tests, and compared to the lifetimes obtained experimentally from tests conducted in the absence of electrochemical effects. A strong correlation between the lifetimes of the membranes in the actual tests and model results is obtained. In general, higher RH (or swelling) amplitude results in larger stress amplitudes and shorter lifetime, that is, fewer cycles to failure. Tensile stresses are needed for forming local cavities in the membrane, which may eventually lead to craze formation. Cavitation is less likely to occur in compressed membrane at high humidities. The stress–lifetime plots for polymer fuel cell membranes exhibit similar features to those observed for other polymers. The crazing criterion for polymers suggests that craze initiation during RH cycling is more likely to occur in the low compression regions, such as under the channels, which is in agreement with experimental observations. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1506–1517, 201

    Mechanical Behavior of Fuel Cell Membranes under Humidity Cycles and Effect of Swelling Anisotropy on the Fatigue Stresses

    Get PDF
    The mechanical response of proton exchange membranes in a fuel cell assembly is investigated under humidity cycles at a constant temperature (85°C). The behavior of the membrane under hydration–dehydration cycles is simulated by imposing a humidity gradient from the cathode to the anode. Linear elastic, plastic constitutive behavior with isotropic hardening and temperature and humidity dependent material properties are utilized in the simulations for the membrane. The evolution of the stresses and plastic deformation during the humidity cycles are determined using finite element analysis for two clamping methods and various levels of swelling anisotropy. The membrane response strongly depends on the swelling anisotropy where the stress amplitude decreases with increasing anisotropy. These results suggest that it may be possible to optimize a membrane with respect to swelling anisotropy to achieve better fatigue resistance, potentially enhancing the durability of fuel cell membranes

    Mechanical Behavior of Fuel Cell Membranes under Humidity Cycles and Effect of Swelling Anisotropy on the Fatigue Stresses

    Get PDF
    The mechanical response of proton exchange membranes in a fuel cell assembly is investigated under humidity cycles at a constant temperature (85°C). The behavior of the membrane under hydration–dehydration cycles is simulated by imposing a humidity gradient from the cathode to the anode. Linear elastic, plastic constitutive behavior with isotropic hardening and temperature and humidity dependent material properties are utilized in the simulations for the membrane. The evolution of the stresses and plastic deformation during the humidity cycles are determined using finite element analysis for two clamping methods and various levels of swelling anisotropy. The membrane response strongly depends on the swelling anisotropy where the stress amplitude decreases with increasing anisotropy. These results suggest that it may be possible to optimize a membrane with respect to swelling anisotropy to achieve better fatigue resistance, potentially enhancing the durability of fuel cell membranes

    Mechanical Response of Fuel Cell Membranes Subjected to a Hygro-Thermal Cycle

    Get PDF
    The mechanical response of fuel cell proton exchange membranes subjected to a single hygro-thermal duty cycle in a fuel cell assembly is investigated through numerical means. To this end, the behavior of the membrane with temperature and humidity dependent material properties is simulated under temperature and humidity loading and unloading conditions. The stress-evolution during a simplified operating cycle is determined using finite element analysis for two clamping methods and two alignments of the bipolar plates. It is shown that compressive, plastic deformation occurs during the hygro-thermal loading, resulting in tensile residual stresses after unloading. These residual in-plane stresses in the membrane may explain the occurrence of cracks and pinholes in the membrane under cyclic loading

    Numerical Investigation of Mechanical Durability in Polymer Electrolyte Membrane Fuel Cells

    Get PDF
    The relationship between the mechanical behavior and water transport in the membrane electrode assembly (MEA) is numerically investigated. Swelling plays a key role in the mechanical response of the MEA during fuel cell operation because swelling can be directly linked to the development of stresses. Thus, in the model introduced here, the stresses and the water distribution are coupled. Two membranes are studied: unreinforced perfluorosulfonic acid (PFSA) and an experimental reinforced composite membrane. The results suggest that open-circuit voltage operations lead to a uniform distribution of stresses and plastic deformation, whereas under current-load operation, the stresses and the plastic deformation are generally lower and localized at the cathode side of the MEA. For the experimental reinforced membrane investigated, the in-plane swelling and, consequently, the stresses and plastic deformation are lower than in an unreinforced PFSA membrane. This reduction is a favorable outcome for improving durability. The model also suggests that the mechanical constraints due to the clamping of the cell may limit the swelling of the membrane and consequently change the water distribution

    Mechanical Response of Fuel Cell Membranes Subjected to a Hygro-Thermal Cycle

    Get PDF
    The mechanical response of fuel cell proton exchange membranes subjected to a single hygro-thermal duty cycle in a fuel cell assembly is investigated through numerical means. To this end, the behavior of the membrane with temperature and humidity dependent material properties is simulated under temperature and humidity loading and unloading conditions. The stress-evolution during a simplified operating cycle is determined using finite element analysis for two clamping methods and two alignments of the bipolar plates. It is shown that compressive, plastic deformation occurs during the hygro-thermal loading, resulting in tensile residual stresses after unloading. These residual in-plane stresses in the membrane may explain the occurrence of cracks and pinholes in the membrane under cyclic loading

    Numerical Investigation of Mechanical Durability in Polymer Electrolyte Membrane Fuel Cells

    Get PDF
    The relationship between the mechanical behavior and water transport in the membrane electrode assembly (MEA) is numerically investigated. Swelling plays a key role in the mechanical response of the MEA during fuel cell operation because swelling can be directly linked to the development of stresses. Thus, in the model introduced here, the stresses and the water distribution are coupled. Two membranes are studied: unreinforced perfluorosulfonic acid (PFSA) and an experimental reinforced composite membrane. The results suggest that open-circuit voltage operations lead to a uniform distribution of stresses and plastic deformation, whereas under current-load operation, the stresses and the plastic deformation are generally lower and localized at the cathode side of the MEA. For the experimental reinforced membrane investigated, the in-plane swelling and, consequently, the stresses and plastic deformation are lower than in an unreinforced PFSA membrane. This reduction is a favorable outcome for improving durability. The model also suggests that the mechanical constraints due to the clamping of the cell may limit the swelling of the membrane and consequently change the water distribution

    Water Uptake in PEMFC Catalyst Layers

    Get PDF
    Water uptake profiles of proton-exchange-membrane fuel-cell catalyst layers are characterized in the form of capillary-pressure saturation (Pc-S) curves. The curves indicate that the catalyst layers tested are highly hydrophilic and require capillary pressures as low as -80 kPa to eject imbibed water. Comparison of materials made with and without Pt indicates a difference in water ejection and uptake phenomena due to the presence of Pt. The addition of Pt increases the tendency of the catalyst layer to retain water. Dynamic vapor sorption (DVS) is used to characterize the water-vapor sorption onto Nafion, Pt/C, and C surfaces. The DVS results align with the trends found from the Pc-S curves and show an increased propensity for water uptake in the presence of Pt. The effect of the ion in Nafion, sodium or protonated form, is also compared and demonstrates that although the protonation of the Nafion in the catalyst layer also increases hydrophilicity, the effect is not as great as that caused by Pt

    Mechanical Properties of a Reinforced Composite Polymer Electrolyte Membrane and its Simulated Performance in PEM Fuel Cells

    Get PDF
    The hygro-thermo-mechanical properties and response of a class of reinforced perfluorosulfonic acid membranes (PFSA), that has potential application as an electrolyte in polymer fuel cells, are investigated through both experimental and numerical modeling means. A critical set of material properties, including Young’s modulus, proportional limit stress, break stress and break strain, is determined for a range of temperature and humidity levels in a custom-built environmental test apparatus. The swelling strains are also determined as functions of temperature and humidity level. To elucidate the mechanical response and the potential effect these properties have on the mechanical durability, mechanics-based simulations are performed using the finite element method (ABAQUS). The results indicate that the relatively high strength of the experimental membrane, in combination with its relatively low in-plane swelling due to water absorption, should have a positive influence on membrane durability, potentially leading to longer life times for polymer electrolyte membrane fuel cells (PEMFC)
    • …
    corecore