100 research outputs found

    Structure-Property Relationship in Ionomer Membranes

    Get PDF
    Perfluorosulfonic acid (PFSA) ionomer membranes are ion-conducting polymers with high water sorption capacity and thermo-mechanical stability. The morphology of PFSA changes during sorption affecting the mechanical and physical properties of the membrane. In this work, we investigate the structure-property relationship in swollen PFSA membranes using three proposed nanostructural descriptions and determine Young\u27s modulus of the membrane at a wide range of temperatures (−20–85°C) and water volume fractions (0–0.5) for these configurations. Comparing the mechanics-based models with experimental data we propose that ion-rich water domains in PFSA membrane are spherical at low water content, spherical with connecting channels at intermediate water content and cylindrical at high water contents. Furthermore, our findings indicate that the scaling behavior for Young\u27s modulus of PFSA ionomers is similar to that of aerogels. This suggests, from a mechanics perspective, that aerogels and ionomers may have a similar interconnected porous nanostructure where some solid regions do not contribute to the mechanical load-bearing capacity

    Aspects of Fatigue Failure Mechanisms in Polymer Fuel Cell Membranes

    Get PDF
    The swelling-driven fatigue behavior of polymer fuel cell membranes during relative humidity (RH) cycling is investigated. In particular, swelling-induced membrane stresses are obtained from a numerical model simulating fuel cell RH cycle tests, and compared to the lifetimes obtained experimentally from tests conducted in the absence of electrochemical effects. A strong correlation between the lifetimes of the membranes in the actual tests and model results is obtained. In general, higher RH (or swelling) amplitude results in larger stress amplitudes and shorter lifetime, that is, fewer cycles to failure. Tensile stresses are needed for forming local cavities in the membrane, which may eventually lead to craze formation. Cavitation is less likely to occur in compressed membrane at high humidities. The stress–lifetime plots for polymer fuel cell membranes exhibit similar features to those observed for other polymers. The crazing criterion for polymers suggests that craze initiation during RH cycling is more likely to occur in the low compression regions, such as under the channels, which is in agreement with experimental observations. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1506–1517, 201

    Highly Permeable Perfluorinated Sulfonic Acid Ionomers for Improved Electrochemical Devices: Insights into Structure-Property Relationships.

    Get PDF
    Rapid improvements in polymer-electrolyte fuel-cell (PEFC) performance have been driven by the development of commercially available ion-conducting polymers (ionomers) that are employed as membranes and catalyst binders in membrane-electrode assemblies. Commercially available ionomers are based on a perfluorinated chemistry comprised of a polytetrafluoroethylene (PTFE) matrix that imparts low gas permeability and high mechanical strength but introduces significant mass-transport losses in the electrodes. These transport losses currently limit PEFC performance, especially for low Pt loadings. In this study, we present a novel ionomer incorporating a glassy amorphous matrix based on a perfluoro(2-methylene-4-methyl-1,3-dioxolane) (PFMMD) backbone. The novel backbone chemistry induces structural changes in the ionomer, restricting ionomer domain swelling under hydration while disrupting matrix crystallinity. These structural changes slightly reduce proton conductivity while significantly improving gas permeability. The performance implications of this trade-off are assessed, which reveal the potential for substantial performance improvement by incorporation of highly permeable ionomers as the functional catalyst binder. These results underscore the significance of tailoring material chemistry to specific device requirements, where ionomer chemistry should be rationally designed to match the local transport requirements of the device architecture

    Mechanical Behavior of Fuel Cell Membranes under Humidity Cycles and Effect of Swelling Anisotropy on the Fatigue Stresses

    Get PDF
    The mechanical response of proton exchange membranes in a fuel cell assembly is investigated under humidity cycles at a constant temperature (85°C). The behavior of the membrane under hydration–dehydration cycles is simulated by imposing a humidity gradient from the cathode to the anode. Linear elastic, plastic constitutive behavior with isotropic hardening and temperature and humidity dependent material properties are utilized in the simulations for the membrane. The evolution of the stresses and plastic deformation during the humidity cycles are determined using finite element analysis for two clamping methods and various levels of swelling anisotropy. The membrane response strongly depends on the swelling anisotropy where the stress amplitude decreases with increasing anisotropy. These results suggest that it may be possible to optimize a membrane with respect to swelling anisotropy to achieve better fatigue resistance, potentially enhancing the durability of fuel cell membranes

    Mechanical Behavior of Fuel Cell Membranes under Humidity Cycles and Effect of Swelling Anisotropy on the Fatigue Stresses

    Get PDF
    The mechanical response of proton exchange membranes in a fuel cell assembly is investigated under humidity cycles at a constant temperature (85°C). The behavior of the membrane under hydration–dehydration cycles is simulated by imposing a humidity gradient from the cathode to the anode. Linear elastic, plastic constitutive behavior with isotropic hardening and temperature and humidity dependent material properties are utilized in the simulations for the membrane. The evolution of the stresses and plastic deformation during the humidity cycles are determined using finite element analysis for two clamping methods and various levels of swelling anisotropy. The membrane response strongly depends on the swelling anisotropy where the stress amplitude decreases with increasing anisotropy. These results suggest that it may be possible to optimize a membrane with respect to swelling anisotropy to achieve better fatigue resistance, potentially enhancing the durability of fuel cell membranes

    Mechanical Response of Fuel Cell Membranes Subjected to a Hygro-Thermal Cycle

    Get PDF
    The mechanical response of fuel cell proton exchange membranes subjected to a single hygro-thermal duty cycle in a fuel cell assembly is investigated through numerical means. To this end, the behavior of the membrane with temperature and humidity dependent material properties is simulated under temperature and humidity loading and unloading conditions. The stress-evolution during a simplified operating cycle is determined using finite element analysis for two clamping methods and two alignments of the bipolar plates. It is shown that compressive, plastic deformation occurs during the hygro-thermal loading, resulting in tensile residual stresses after unloading. These residual in-plane stresses in the membrane may explain the occurrence of cracks and pinholes in the membrane under cyclic loading

    New Approaches to Improved PEM Fuel Cell Catalyst Layers

    Get PDF
    Polymer-electrolyte membrane (PEM) fuel-cells are one of the most promising energy conversion technologies for renewable clean energy applications. A major challenge preventing their widespread commercialization is achieving high performance with lowloadings of platinum group metal (PGM) catalysts. One of the factors driving performance limitations in the cell is the mass transport losses within the cathode catalyst layers due to sluggish oxygen-reduction reactions occurring at the platinum-ionomer interface, which is believed to be linked to reduced transport of ions and oxygen. A viable solution to reduce the transport resistances in the catalyst layers is to create new ionomers that can provide good ion and oxygen transport needed to accomplish high-performing fuel cell catalysts. Characterization of transport properties of ionomers for various molecular architectures is the key step, in the effort to create and identify the optimized polymer structure with improved transport. Using this approach, Tetramer Technologies and LBNL propose improved fuel-cell catalyst ionomers based on Tetramers proprietary polymer chemistry, as highlighted under subtopic 17a Innovative Approaches Toward Discovery and Development of Improved Ionomers for Polymer Electrolyte Membrane Fuel Cell Catalyst Layer

    Mechanical Response of Fuel Cell Membranes Subjected to a Hygro-Thermal Cycle

    Get PDF
    The mechanical response of fuel cell proton exchange membranes subjected to a single hygro-thermal duty cycle in a fuel cell assembly is investigated through numerical means. To this end, the behavior of the membrane with temperature and humidity dependent material properties is simulated under temperature and humidity loading and unloading conditions. The stress-evolution during a simplified operating cycle is determined using finite element analysis for two clamping methods and two alignments of the bipolar plates. It is shown that compressive, plastic deformation occurs during the hygro-thermal loading, resulting in tensile residual stresses after unloading. These residual in-plane stresses in the membrane may explain the occurrence of cracks and pinholes in the membrane under cyclic loading

    Numerical Investigation of Mechanical Durability in Polymer Electrolyte Membrane Fuel Cells

    Get PDF
    The relationship between the mechanical behavior and water transport in the membrane electrode assembly (MEA) is numerically investigated. Swelling plays a key role in the mechanical response of the MEA during fuel cell operation because swelling can be directly linked to the development of stresses. Thus, in the model introduced here, the stresses and the water distribution are coupled. Two membranes are studied: unreinforced perfluorosulfonic acid (PFSA) and an experimental reinforced composite membrane. The results suggest that open-circuit voltage operations lead to a uniform distribution of stresses and plastic deformation, whereas under current-load operation, the stresses and the plastic deformation are generally lower and localized at the cathode side of the MEA. For the experimental reinforced membrane investigated, the in-plane swelling and, consequently, the stresses and plastic deformation are lower than in an unreinforced PFSA membrane. This reduction is a favorable outcome for improving durability. The model also suggests that the mechanical constraints due to the clamping of the cell may limit the swelling of the membrane and consequently change the water distribution

    Numerical Investigation of Mechanical Durability in Polymer Electrolyte Membrane Fuel Cells

    Get PDF
    The relationship between the mechanical behavior and water transport in the membrane electrode assembly (MEA) is numerically investigated. Swelling plays a key role in the mechanical response of the MEA during fuel cell operation because swelling can be directly linked to the development of stresses. Thus, in the model introduced here, the stresses and the water distribution are coupled. Two membranes are studied: unreinforced perfluorosulfonic acid (PFSA) and an experimental reinforced composite membrane. The results suggest that open-circuit voltage operations lead to a uniform distribution of stresses and plastic deformation, whereas under current-load operation, the stresses and the plastic deformation are generally lower and localized at the cathode side of the MEA. For the experimental reinforced membrane investigated, the in-plane swelling and, consequently, the stresses and plastic deformation are lower than in an unreinforced PFSA membrane. This reduction is a favorable outcome for improving durability. The model also suggests that the mechanical constraints due to the clamping of the cell may limit the swelling of the membrane and consequently change the water distribution
    • …
    corecore