1,676 research outputs found
A Turner syndrome neurocognitive phenotype maps to Xp22.3
BACKGROUND: Turner syndrome (TS) is associated with a neurocognitive phenotype that includes selective nonverbal deficits, e.g., impaired visual-spatial abilities. We previously reported evidence that this phenotype results from haploinsufficiency of one or more genes on distal Xp. This inference was based on genotype/phenotype comparisons of individual girls and women with partial Xp deletions, with the neurocognitive phenotype considered a dichotomous trait. We sought to confirm our findings in a large cohort (n = 47) of adult women with partial deletions of Xp or Xq, enriched for subjects with distal Xp deletions. METHODS: Subjects were recruited from North American genetics and endocrinology clinics. Phenotype assessment included measures of stature, ovarian function, and detailed neurocognitive testing. The neurocognitive phenotype was measured as a quantitative trait, the Turner Syndrome Cognitive Summary (TSCS) score, derived from discriminant function analysis. Genetic analysis included karyotyping, X inactivation studies, fluorescent in situ hybridization, microsatellite marker genotyping, and array comparative genomic hybridization. RESULTS: We report statistical evidence that deletion of Xp22.3, an interval containing 31 annotated genes, is sufficient to cause the neurocognitive phenotype described by the TSCS score. Two other cardinal TS features, ovarian failure and short stature, as well as X chromosome inactivation pattern and subject\u27s age, were unrelated to the TSCS score. CONCLUSION: Detailed mapping suggests that haploinsufficiency of one or more genes in Xp22.3, the distal 8.3 megabases (Mb) of the X chromosome, is responsible for a TS neurocognitive phenotype. This interval includes the 2.6 Mb Xp-Yp pseudoautosomal region (PAR1). Haploinsufficiency of the short stature gene SHOX in PAR1 probably does not cause this TS neurocognitive phenotype. Two genes proximal to PAR1 within the 8.3 Mb critical region, STS and NLGN4X, are attractive candidates for this neurocognitive phenotype
Multi-agent Coordination in Directed Moving Neighborhood Random Networks
In this paper, we consider the consensus problem of dynamical multiple agents
that communicate via a directed moving neighborhood random network. Each agent
performs random walk on a weighted directed network. Agents interact with each
other through random unidirectional information flow when they coincide in the
underlying network at a given instant. For such a framework, we present
sufficient conditions for almost sure asymptotic consensus. Some existed
consensus schemes are shown to be reduced versions of the current model.Comment: 9 page
A Quantum Langevin Formulation of Risk-Sensitive Optimal Control
In this paper we formulate a risk-sensitive optimal control problem for
continuously monitored open quantum systems modelled by quantum Langevin
equations. The optimal controller is expressed in terms of a modified
conditional state, which we call a risk-sensitive state, that represents
measurement knowledge tempered by the control purpose. One of the two
components of the optimal controller is dynamic, a filter that computes the
risk-sensitive state.
The second component is an optimal control feedback function that is found by
solving the dynamic programming equation. The optimal controller can be
implemented using classical electronics.
The ideas are illustrated using an example of feedback control of a two-level
atom
A stochastic approximation algorithm with multiplicative step size modification
An algorithm of searching a zero of an unknown function \vphi : \,
\R \to \R is considered: ,\,
, where is the
value of \vphi measured at and is the
measurement error. The step sizes \gam_t > 0 are modified in the
course of the algorithm according to the rule: \, \gamma_t =
\min\{u\, \gamma_{t-1},\, \mstep\} if , and , otherwise, where . That is, at each iteration \gam_t is
multiplied either by or by , provided that the resulting
value does not exceed the predetermined value \mstep. The function
\vphi may have one or several zeros; the random values are
independent and identically distributed, with zero mean and finite
variance. Under some additional assumptions on \vphi, , and
\mstep, the conditions on and guaranteeing a.s.
convergence of the sequence , as well as a.s. divergence,
are determined. In particular, if and for any , one has
convergence for . Due to the
multiplicative updating rule for \gam_t, the sequence
converges rapidly: like a geometric progression (if convergence
takes place), but the limit value may not coincide with, but
instead, approximates one of the zeros of \vphi. By adjusting the
parameters and , one can reach arbitrarily high precision of
the approximation; higher precision is obtained at the expense of
lower convergence rate
Surface electrons at plasma walls
In this chapter we introduce a microscopic modelling of the surplus electrons
on the plasma wall which complements the classical description of the plasma
sheath. First we introduce a model for the electron surface layer to study the
quasistationary electron distribution and the potential at an unbiased plasma
wall. Then we calculate sticking coefficients and desorption times for electron
trapping in the image states. Finally we study how surplus electrons affect
light scattering and how charge signatures offer the possibility of a novel
charge measurement for dust grains.Comment: To appear in Complex Plasmas: Scientific Challenges and Technological
Opportunities, Editors: M. Bonitz, K. Becker, J. Lopez and H. Thomse
Heisenberg Picture Approach to the Stability of Quantum Markov Systems
Quantum Markovian systems, modeled as unitary dilations in the quantum
stochastic calculus of Hudson and Parthasarathy, have become standard in
current quantum technological applications. This paper investigates the
stability theory of such systems. Lyapunov-type conditions in the Heisenberg
picture are derived in order to stabilize the evolution of system operators as
well as the underlying dynamics of the quantum states. In particular, using the
quantum Markov semigroup associated with this quantum stochastic differential
equation, we derive sufficient conditions for the existence and stability of a
unique and faithful invariant quantum state. Furthermore, this paper proves the
quantum invariance principle, which extends the LaSalle invariance principle to
quantum systems in the Heisenberg picture. These results are formulated in
terms of algebraic constraints suitable for engineering quantum systems that
are used in coherent feedback networks
Recommended from our members
Aspiration therapy for the treatment of obesity: 4-year results of a multicenter randomized controlled trial.
BackgroundThe AspireAssist is the first Food and Drug Administration-approved endoluminal device indicated for treatment of class II and III obesity.ObjectivesWe earlier reported 1-year results of the PATHWAY study. Here, we report 4-year outcomes.SettingUnited States-based, 10-center, randomized controlled trial involving 171 participants with the treatment arm receiving Aspiration Therapy (AT) plus Lifestyle Therapy and the control arm receiving Lifestyle Therapy (2:1 randomization).MethodsAT participants were permitted to continue in the study for an additional year up to a maximum of 5 years providing they maintained at least 10% total weight loss (TWL) from baseline at each year end. For AT participants who continued the study, 5 medical monitoring visits were provided at weeks 60, 68, 76, 90, and 104 and thereafter once every 13 weeks up to week 260. Exclusion criteria were a history of eating disorder or evidence of eating disorder on a validated questionnaire. Follow-up weight, quality of life, and co-morbidities were compared with the baseline levels. In addition, rates of serious adverse event, persistent fistula, withdrawal, and A-tube replacement were reported. All analyses were performed using a per-protocol analysis.ResultsOf the 82 AT participants who completed 1 year, 58 continued to this phase of the trial. Mean baseline body mass index of these 58 patients was 41.6 ± 4.5 kg/m2. At the end of first year (at the beginning of the follow-up study), these 58 patients had a body mass index of 34.1 ± 5.4 kg/m2 and had achieved an 18.3 ± 8.0% TWL. On a per protocol basis, patients experienced 14.2%, 15.3%, 16.6%, and 18.7% TWL at 1, 2, 3, and 4 years, respectively (P < .01 for all). Forty of 58 patients (69%) achieved at least 10% TWL at 4 years or at time of study withdrawal. Improvements in quality of life scores and select cardiometabolic parameters were also maintained through 4 years. There were 2 serious adverse events reported in the second through fourth years, both of which resolved with removal or replacement of the A tube. Two persistent fistulas required surgical repair, representing approximately 2% of all tube removals. There were no clinically significant metabolic or electrolytes disorders observed, nor any evidence for development of any eating disorders.ConclusionsThe results of this midterm study have shown that AT is a safe, effective, and durable weight loss alternative for people with class II and III obesity and who are willing to commit to using the therapy and adhere to adjustments in eating behavior
Recommended from our members
Stratospheric variability and tropospheric annular‐mode timescales
Climate models tend to exhibit much too persistent Southern Annular Mode (SAM) circulation anomalies in summer, compared to observations. Theoretical arguments suggest this bias may lead to an overly strong model response to anthropogenic forcing during this season, which is of interest since the largest observed changes in Southern Hemisphere high‐latitude climate over the last few decades have occurred in summer, and are congruent with the SAM. The origin of this model bias is examined here in the case of the Canadian Middle Atmosphere Model, using a novel technique to quantify the influence of stratospheric variability on tropospheric annular‐mode timescales. Part of the model bias is shown to be attributable to the too‐late breakdown of the stratospheric polar vortex, which allows the tropospheric influence of stratospheric variability to extend into early summer. However, the analysis also reveals an enhanced summertime persistence of the model’s SAM that is unrelated to either stratospheric variability or the bias in model stratospheric climatology, and is thus of tropospheric origin. No such feature is evident in the Northern Hemisphere. The effect of stratospheric variability in lengthening tropospheric annular‐mode timescales is evident in both hemispheres. While in the Southern Hemisphere the effect is restricted to late‐spring/early summer, in the Northern Hemisphere it can occur throughout the winter‐spring season, with the seasonality of peak timescales exhibiting considerable variability between different 50 year sections of the same simulation
- …