170 research outputs found
On finite-difference approximations for normalized Bellman equations
A class of stochastic optimal control problems involving optimal stopping is
considered. Methods of Krylov are adapted to investigate the numerical
solutions of the corresponding normalized Bellman equations and to estimate the
rate of convergence of finite difference approximations for the optimal reward
functions.Comment: 36 pages, ArXiv version updated to the version accepted in Appl.
Math. Opti
Effect of time-correlation of input patterns on the convergence of on-line learning
We studied the effects of time correlation of subsequent patterns on the
convergence of on-line learning by a feedforward neural network with
backpropagation algorithm. By using chaotic time series as sequences of
correlated patterns, we found that the unexpected scaling of converging time
with learning parameter emerges when time-correlated patterns accelerate
learning process.Comment: 8 pages(Revtex), 5 figure
Sequential design of computer experiments for the estimation of a probability of failure
This paper deals with the problem of estimating the volume of the excursion
set of a function above a given threshold,
under a probability measure on that is assumed to be known. In
the industrial world, this corresponds to the problem of estimating a
probability of failure of a system. When only an expensive-to-simulate model of
the system is available, the budget for simulations is usually severely limited
and therefore classical Monte Carlo methods ought to be avoided. One of the
main contributions of this article is to derive SUR (stepwise uncertainty
reduction) strategies from a Bayesian-theoretic formulation of the problem of
estimating a probability of failure. These sequential strategies use a Gaussian
process model of and aim at performing evaluations of as efficiently as
possible to infer the value of the probability of failure. We compare these
strategies to other strategies also based on a Gaussian process model for
estimating a probability of failure.Comment: This is an author-generated postprint version. The published version
is available at http://www.springerlink.co
Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions
A microscopic heterogeneous system under random influence is considered. The
randomness enters the system at physical boundary of small scale obstacles as
well as at the interior of the physical medium. This system is modeled by a
stochastic partial differential equation defined on a domain perforated with
small holes (obstacles or heterogeneities), together with random dynamical
boundary conditions on the boundaries of these small holes.
A homogenized macroscopic model for this microscopic heterogeneous stochastic
system is derived. This homogenized effective model is a new stochastic partial
differential equation defined on a unified domain without small holes, with
static boundary condition only. In fact, the random dynamical boundary
conditions are homogenized out, but the impact of random forces on the small
holes' boundaries is quantified as an extra stochastic term in the homogenized
stochastic partial differential equation. Moreover, the validity of the
homogenized model is justified by showing that the solutions of the microscopic
model converge to those of the effective macroscopic model in probability
distribution, as the size of small holes diminishes to zero.Comment: Communications in Mathematical Physics, to appear, 200
Stochastic Approximation to Understand Simple Simulation Models
This paper illustrates how a deterministic approximation of a stochastic process
can be usefully applied to analyse the dynamics of many simple simulation models. To
demonstrate the type of results that can be obtained using this approximation, we present two
illustrative examples which are meant to serve as methodological references for researchers
exploring this area. Finally, we prove some convergence results for simulations of a family
of evolutionary games, namely, intra-population imitation models in n-player games with
arbitrary payoffs.Ministerio de Educación (JC2009- 00263), Ministerio de Ciencia e Innovación (CONSOLIDER-INGENIO 2010: CSD2010-00034, DPI2010-16920
Robust filtering for a class of nonlinear stochastic systems with probability constraints
This paper is concerned with the probability-constrained filtering problem for a class of time-varying nonlinear stochastic systems with estimation error variance constraint. The stochastic nonlinearity considered is quite general that is capable of describing several well-studied stochastic nonlinear systems. The second-order statistics of the noise sequence are unknown but belong to certain known convex set. The purpose of this paper is to design a filter guaranteeing a minimized upper-bound on the estimation error variance. The existence condition for the desired filter is established, in terms of the feasibility of a set of difference Riccati-like equations, which can be solved forward in time. Then, under the probability constraints, a minimax estimation problem is proposed for determining the suboptimal filter structure that minimizes the worst-case performance on the estimation error variance with respect to the uncertain second-order statistics. Finally, a numerical example is presented to show the effectiveness and applicability of the proposed method
- …