391 research outputs found

    Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method

    Get PDF
    The determination of the longitudinal spin Seebeck effect (LSSE) coefficient is currently plagued by a large uncertainty due to the poor reproducibility of the experimental conditions used in its measurement. In this work we present a detailed analysis of two different methods used for the determination of the LSSE coefficient. We have performed LSSE experiments in different laboratories, by using different setups and employing both the temperature difference method and the heat flux method. We found that the lack of reproducibility can be mainly attributed to the thermal contact resistance between the sample and the thermal baths which generate the temperature gradient. Due to the variation of the thermal resistance, we found that the scaling of the LSSE voltage to the heat flux through the sample rather than to the temperature difference across the sample greatly reduces the uncertainty. The characteristics of a single YIG/Pt LSSE device obtained with two different setups was (1.143±0.007)⋅10−7(1.143\pm0.007)\cdot 10^{-7} Vm/W and (1.101±0.015)⋅10−7(1.101\pm0.015)\cdot 10^{-7} Vm/W with the heat flux method and (2.313±0.017)⋅10−7(2.313\pm0.017)\cdot 10^{-7} V/K and (4.956±0.005)⋅10−7(4.956\pm0.005)\cdot 10^{-7} V/K with the temperature difference method. This shows that systematic errors can be considerably reduced with the heat flux method.Comment: PDFLaTeX, 10 pages, 6 figure

    Nonlocal magnon-polaron transport in yttrium iron garnet

    Get PDF
    The spin Seebeck effect (SSE) is observed in magnetic insulator|heavy metal bilayers as an inverse spin Hall effect voltage under a temperature gradient. The SSE can be detected nonlocally as well, viz. in terms of the voltage in a second metallic contact (detector) on the magnetic film, spatially separated from the first contact that is used to apply the temperature bias (injector). Magnon-polarons are hybridized lattice and spin waves in magnetic materials, generated by the magnetoelastic interaction. Kikkawa et al. [Phys. Rev. Lett. \textbf{117}, 207203 (2016)] interpreted a resonant enhancement of the local SSE in yttrium iron garnet (YIG) as a function of the magnetic field in terms of magnon-polaron formation. Here we report the observation of magnon-polarons in \emph{nonlocal} magnon spin injection/detection devices for various injector-detector spacings and sample temperatures. Unexpectedly, we find that the magnon-polaron resonances can suppress rather than enhance the nonlocal SSE. Using finite element modelling we explain our observations as a competition between the SSE and spin diffusion in YIG. These results give unprecedented insights into the magnon-phonon interaction in a key magnetic material.Comment: 5 pages, 6 figure

    Electronic and magnetic structure of epitaxial NiO/Fe3_3O4_4(001) heterostructures grown on MgO(001) and Nb-doped SrTiO3_3(001)

    Get PDF
    We study the underlying chemical, electronic and magnetic properties of a number of magnetite based thin films. The main focus is placed onto NiO/Fe3_3O4_4(001) bilayers grown on MgO(001) and Nb-SrTiO3_3(001) substrates. We compare the results with those obtained on pure Fe3_3O4_4(001) thin films. It is found that the magnetite layers are oxidized and Fe3+^{3+} dominates at the surfaces due to maghemite (γ\gamma-Fe2_2O3_3) formation, which decreases with increasing magnetite layer thickness. From a layer thickness of around 20 nm on the cationic distribution is close to that of stoichiometric Fe3_3O4_4. At the interface between NiO and Fe3_3O4_4 we find the Ni to be in a divalent valence state, with unambiguous spectral features in the Ni 2p core level x-ray photoelectron spectra typical for NiO. The formation of a significant NiFe2_2O4_4 interlayer can be excluded by means of XMCD. Magneto optical Kerr effect measurements reveal significant higher coercive fields compared to magnetite thin films grown on MgO(001), and a 45∘^{\circ} rotated magnetic easy axis. We discuss the spin magnetic moments of the magnetite layers and find that the moment increases with increasing thin film thickness. At low thickness the NiO/Fe3_3O4_4 films grown on Nb-SrTiO3_3 exhibits a significantly decreased spin magnetic moments. A thickness of 20 nm or above leads to spin magnetic moments close to that of bulk magnetite

    Magnetic order of Dy3+ and Fe3+ moments in antiferromagnetic DyFeO3 probed by spin Hall magnetoresistance and spin Seebeck effect

    Get PDF
    We report on spin Hall magnetoresistance (SMR) and spin Seebeck effect (SSE) in single crystal of the rare-earth antiferromagnet DyFeO3_{3} with a thin Pt film contact. The angular shape and symmetry of the SMR at elevated temperatures reflect the antiferromagnetic order of the Fe3+^{3+} moments as governed by the Zeeman energy, the magnetocrystalline anisotropy and the Dzyaloshinskii-Moriya interaction. We interpret the observed linear dependence of the signal on the magnetic field strength as evidence for field-induced order of the Dy3+^{3+} moments up to room temperature. At and below the Morin temperature of 50 \,K, the SMR monitors the spin-reorientation phase transition of Fe3+^{3+} spins. Below 23 \,K, additional features emerge that persist below 4 \,K, the ordering temperature of the Dy3+^{3+} magnetic sublattice. We conclude that the combination of SMR and SSE is a simple and efficient tool to study spin reorientation phase transitions and sublattice magnetizations
    • …
    corecore