84 research outputs found
Parallel computation of echelon forms
International audienceWe propose efficient parallel algorithms and implementations on shared memory architectures of LU factorization over a finite field. Compared to the corresponding numerical routines, we have identified three main difficulties specific to linear algebra over finite fields. First, the arithmetic complexity could be dominated by modular reductions. Therefore, it is mandatory to delay as much as possible these reductions while mixing fine-grain parallelizations of tiled iterative and recursive algorithms. Second, fast linear algebra variants, e.g., using Strassen-Winograd algorithm, never suffer from instability and can thus be widely used in cascade with the classical algorithms. There, trade-offs are to be made between size of blocks well suited to those fast variants or to load and communication balancing. Third, many applications over finite fields require the rank profile of the matrix (quite often rank deficient) rather than the solution to a linear system. It is thus important to design parallel algorithms that preserve and compute this rank profile. Moreover, as the rank profile is only discovered during the algorithm, block size has then to be dynamic. We propose and compare several block decomposition: tile iterative with left-looking, right-looking and Crout variants, slab and tile recursive. Experiments demonstrate that the tile recursive variant performs better and matches the performance of reference numerical software when no rank deficiency occur. Furthermore, even in the most heterogeneous case, namely when all pivot blocks are rank deficient, we show that it is possbile to maintain a high efficiency
The cooperative parallel: A discussion about run-time schedulers for nested parallelism
Nested parallelism is a well-known parallelization strategy to exploit irregular parallelism in HPC applications. This strategy also fits in critical real-time embedded systems, composed of a set of concurrent functionalities. In this case, nested parallelism can be used to further exploit the parallelism of each functionality. However, current run-time implementations of nested parallelism can produce inefficiencies and load imbalance. Moreover, in critical real-time embedded systems, it may lead to incorrect executions due to, for instance, a work non-conserving scheduler. In both cases, the reason is that the teams of OpenMP threads are a black-box for the scheduler, i.e., the scheduler that assigns OpenMP threads and tasks to the set of available computing resources is agnostic to the internal execution of each team.
This paper proposes a new run-time scheduler that considers dynamic information of the OpenMP threads and tasks running within several concurrent teams, i.e., concurrent parallel regions. This information may include the existence of OpenMP threads waiting in a barrier and the priority of tasks ready to execute. By making the concurrent parallel regions to cooperate, the shared computing resources can be better controlled and a work conserving and priority driven scheduler can be guaranteed.Peer ReviewedPostprint (author's final draft
Empirical Installation of Linear Algebra Shared-Memory Subroutines for Auto-Tuning
The final publication is available at Springer via http://dx.doi.org/10.1007/s10766-013-0249-6The introduction of auto-tuning techniques in linear algebra shared-memory routines is analyzed. Information obtained in the installation of the routines is used at running time to take some decisions to reduce the total execution time. The study is carried out with routines at different levels (matrix multiplication, LU and Cholesky factorizations and linear systems symmetric or general routines) and with calls to routines in the LAPACK and PLASMA libraries with multithread implementations. Medium NUMA and large cc-NUMA systems are used in the experiments. This variety of routines, libraries and systems allows us to obtain general conclusions about the methodology to use for linear algebra shared-memory routines auto-tuning. Satisfactory execution times are obtained with the proposed methodology.Partially supported by Fundacion Seneca, Consejeria de Educacion de la Region de Murcia, 08763/PI/08, PROMETEO/2009/013 from Generalitat Valenciana, the Spanish Ministry of Education and Science through TIN2012-38341-C04-03, and the High-Performance Computing Network on Parallel Heterogeneus Architectures (CAPAP-H). The authors gratefully acknowledge the computer resources and assistance provided by the Supercomputing Centre of the Scientific Park Foundation of Murcia and by the Centre de Supercomputacio de Catalunya.Cámara, J.; Cuenca, J.; GimĂ©nez, D.; GarcĂa, LP.; Vidal Maciá, AM. (2014). Empirical Installation of Linear Algebra Shared-Memory Subroutines for Auto-Tuning. International Journal of Parallel Programming. 42(3):408-434. https://doi.org/10.1007/s10766-013-0249-6S408434423Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H., Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: the PLASMA and MAGMA projects. J. Phys. Conf. Ser. 180(1), 1–5 (2009)Alberti, P., Alonso, P., Vidal, A.M., Cuenca, J., GimĂ©nez, D.: Designing polylibraries to speed up linear algebra computations. Int. J. High Perform. Comput. Netw. 1/2/3(1), 75–84 (2004)Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.J., Du Croz, J., Grenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., D. Sorensen, S.: LAPACK User’s Guide. Society for Industrial and Applied Mathematics, Philadelphia (1995)BernabĂ©, G., Cuenca, J., GimĂ©nez, D.: Optimization techniques for 3D-FWT on systems with manycore GPUs and multicore CPUs. In: ICCS (2013)Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear algebra algorithms for multicore architectures. Parallel Comput. 35(1), 38–53 (2009)Cámara, J., Cuenca, J., GimĂ©nez, D., Vidal. A.M.: Empirical autotuning of two-level parallel linear algebra routines on large cc-NUMA systems. In: ISPA (2012)Caron, E., Desprez, F., Suter, F.: Parallel extension of a dynamic performance forecasting tool. Scalable Comput. Pract. Exp. 6(1), 57–69 (2005)Chen, Z., Dongarra, J., Luszczek, P., Roche, K.: Self adapting software for numerical linear algebra and LAPACK for clusters. Parallel Comput. 29, 1723–1743 (2003)Cuenca, J., GimĂ©nez, D., González, J.: Achitecture of an automatic tuned linear algebra library. Parallel Comput. 30(2), 187–220 (2004)Cuenca, J., GarcĂa, L.P., GimĂ©nez, D.: Improving linear algebra computation on NUMA platforms through auto-tuned nested parallelism. In: Proceedings of the 2012 EUROMICRO Conference on Parallel, Distributed and Network Processing (2012)Frigo, M.: FFTW: An adaptive software architecture for the FFT. In: Proceedings of the ICASSP Conference, vol. 3, p. 1381 (1998)Golub, G., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins University Press, Baltimore (1996)Im, E.-J., Yelick, K., Vuduc, R.: Sparsity: optimization framework for sparse matrix kernels. Int. J. High Perform. Comput. Appl. (IJHPCA) 18(1), 135–158 (2004)Intel MKL web page.: http://software.intel.com/en-us/intel-mkl/Jerez, S., Montávez, J.-P., GimĂ©nez, D.: Optimizing the execution of a parallel meteorology simulation code. In: Proceedings of the 23rd IEEE International Parallel and Distributed Processing Symposium. IEEE (2009)Katagiri, T., Kise, K., Honda, H., Yuba, T.: Fiber: a generalized framework for auto-tuning software. Springer LNCS 2858, 146–159 (2003)Katagiri, T., Kise, K., Honda, H., Yuba, T.: ABCLib-DRSSED: a parallel eigensolver with an auto-tuning facility. Parallel Comput. 32(3), 231–250 (2006)Kurzak, J., Tomov, S., Dongarra, J.: Autotuning gemm kernels for the FERMI GPU. IEEE Trans. Parallel Distrib. Syst. 23(11), 2045–2057 (2012)Lastovetsky, A.L., Reddy, R., Higgins, R.: Building the functional performance model of a processor. In: SAC, pp. 746–753 (2006)Li, J., Skjellum, A., Falgout, R.D.: A poly-algorithm for parallel dense matrix multiplication on two-dimensional process grid topologies. Concurrency Pract. Exp. 9(5), 345–389 (1997)Naono, K., Teranishi, K., Cavazos, J., Suda, R., (eds.): Software Automatic Tuning. From Concepts to State-of-the-Art Results. Springer, Berlin (2010)Nath, R., Tomov, S., Dongarra, J.: An improved MAGMA gemm for FERMI graphics processing units. IJHPCA 24(4), 511–515 (2010)Petitet, A., Blackford, L.S., Dongarra, J., Ellis, B., Fagg, G.E., Roche, K., Vadhiyar, S.S.: Numerical libraries and the grid. IJHPCA 15(4), 359–374 (2001)PLASMA.: http://icl.cs.utk.edu/plasma/PĂĽschel, M., Moura, J.M.F., Singer, B., Xiong, J., Johnson, J.R., Padua, D.A., Veloso, M.M., Johnson, R.W.: Spiral: a generator for platform-adapted libraries of signal processing algorithms. IJHPCA 18(1), 21–45 (2004)Seshagiri, L., Wu, M.-S., Sosonkina, M., Zhang, Z., Gordon, M.S., Schmidt, M.W.: Enhancing adaptive middleware for quantum chemistry applications with a database framework. In: IPDPS Workshops, pp. 1–8 (2010)Tanaka, T., Katagiri, T., Yuba, T.: d-Spline based incremental parameter estimation in automatic performance tuning. In: PARA, pp. 986–995 (2006)Vuduc, R., Demmel, J., Bilmes, J.: Statistical models for automatic performance tuning. In: International Conference on Computational Science (1), pp. 117–126 (2001)Whaley, R.C., Petitet, A., Dongarra, J.: Automated empirical optimizations of software and the ATLAS project. Parallel Comput. 27(1–2), 3–35 (2001
Mixed precision bisection
We discuss the implementation of the bisection algorithm for the computation of the eigenvalues of
symmetric tridiagonal matrices in a context of mixed precision arithmetic. This approach is motivated by the
emergence of processors which carry out floating-point operations much faster in single precision than they do in double precision. Perturbation theory results are used to decide when to switch from single to double precision. Numerical examples are presente
A high-performance matrix-matrix multiplication methodology for CPU and GPU architectures
Current compilers cannot generate code that can compete with hand-tuned code in efficiency, even for a simple kernel like matrix–matrix multiplication (MMM). A key step in program optimization is the estimation of optimal values for parameters such as tile sizes and number of levels of tiling. The scheduling parameter values selection is a very difficult and time-consuming task, since parameter values depend on each other; this is why they are found by using searching methods and empirical techniques. To overcome this problem, the scheduling sub-problems must be optimized together, as one problem and not separately. In this paper, an MMM methodology is presented where the optimum scheduling parameters are found by decreasing the search space theoretically, while the major scheduling sub-problems are addressed together as one problem and not separately according to the hardware architecture parameters and input size; for different hardware architecture parameters and/or input sizes, a different implementation is produced. This is achieved by fully exploiting the software characteristics (e.g., data reuse) and hardware architecture parameters (e.g., data caches sizes and associativities), giving high-quality solutions and a smaller search space. This methodology refers to a wide range of CPU and GPU architectures
- …