42 research outputs found

    Is there sufficient evidence for tuning fork tests in diagnosing fractures? A systematic review

    Get PDF
    OBJECTIVE: To determine the diagnostic accuracy of tuning fork tests for detecting fractures. DESIGN: Systematic review of primary studies evaluating the diagnostic accuracy of tuning fork tests for the presence of fracture. DATA SOURCE: We searched MEDLINE, CINAHL, AMED, EMBASE, Sports Discus, CAB Abstracts and Web of Science from commencement to November 2012. We manually searched the reference lists of any review papers and any identified relevant studies. STUDY SELECTION AND DATA EXTRACTION: Two reviewers independently reviewed the list of potentially eligible studies and rated the studies for quality using the QUADAS-2 tool. Data were extracted to form 2×2 contingency tables. The primary outcome measure was the accuracy of the test as measured by its sensitivity and specificity with 95% CIs. DATA SYNTHESIS: We included six studies (329 patients), with two types of tuning fork tests (pain induction and loss of sound transmission). The studies included patients with an age range 7–60 years. The prevalence of fracture ranged from 10% to 80%. The sensitivity of the tuning fork tests was high, ranging from 75% to 100%. The specificity of the tests was highly heterogeneous, ranging from 18% to 95%. CONCLUSIONS: Based on the studies in this review, tuning fork tests have some value in ruling out fractures, but are not sufficiently reliable or accurate for widespread clinical use. The small sample size of the studies and the observed heterogeneity make generalisable conclusion difficult

    First Blood Vessels in the Avian Neural Tube Are Formed by a Combination of Dorsal Angioblast Immigration and Ventral Sprouting of Endothelial Cells

    Get PDF
    AbstractWe studied the early pattern of neural tube (NT) vascularization in quail embryos and chick–quail chimeras. Angioblasts appeared first in the dorsal third at Hamburger and Hamilton (HH) stage 19 as single, migrating cells. Their distribution did not correspond to a segmental pattern. After this initial dorsal immigration, endothelial sprouts invaded the NT on either side of the floor plate (HH stage 21). These cells remained continuous with their arterial vascular sources, connected to the venous perineural vascular plexus at HH-stage 22, and formed the first perfused vessels of the NT at HH-stage 23. The same pattern of angiotrophic vascularization was observed in a craniocaudal sequence starting caudal to the rhombencephalic NT. Extremely long filopodia were observed on sprouting cells, extending toward the central canal and the mantle layer. The exclusively extraneuroectodermal origin of angioblastic cells was demonstrated with chick–quail chimeras. Following replacement of quail NT by chick NT graft, angioblast and sprout distribution in chimeras was the same as in controls. We conclude that the NT receives its first blood vessels by a combination of two different processes, dorsal immigration of isolated migrating angioblastic cells and ventral sprouting of endothelial cells, which derive from perfused vessels. The dorsal invasive angioblasts contribute to the developing intraneural vascular plexus after having traversed the neural tube. The initial distribution of blood vessels within the neuroepithelium corresponds to intrinsic random motility of angioblastic cells; a more regular pattern is seen later. The floor plate apparently prohibits connections between sprouts in both NT sides, whereas in the dorsal NT, such a separating effect on the migrating angioblasts does not exist

    Reactive oxygen species induce expression of vascular endothelial growth factor in chondrocytes and human articular cartilage explants

    Get PDF
    Vascular endothelial growth factor (VEGF) promotes cartilage-degrading pathways, and there is evidence for the involvement of reactive oxygen species (ROS) in cartilage degeneration. However, a relationship between ROS and VEGF has not been reported. Here, we investigate whether the expression of VEGF is modulated by ROS. Aspirates of synovial fluid from patients with osteoarthritis (OA) were examined for intra-articular VEGF using ELISA. Immortalized C28/I2 chondrocytes and human knee cartilage explants were exposed to phorbol myristate acetate (PMA; 0–20 μg/ml), which is a ROS inducer, or 3-morpholino-sydnonimine hydrochloride (SIN-1; 0–20 μM), which is a ROS donor. The levels of VEGF protein and nitric oxide (NO) production were determined in the medium supernatant, using ELISA and Griess reagent, respectively. Gene expression of VEGF-121 and VEGF-165 was determined by splice variant RT-PCR. Expression of VEGF and VEGF receptors (VEGFR-1 and VEGFR-2) was quantified by real-time RT-PCR. Synovial fluid from OA patients revealed markedly elevated levels of VEGF. Common RT-PCR revealed that the splice variants were present in both immortalized chondrocytes and cartilage discs. In immortalized chondrocytes, stimulation with PMA or SIN-1 caused increases in the levels of VEGF, VEGFR-1 and VEGFR-2 mRNA expression. Cartilage explants produced similar results, but VEGFR-1 was only detectable after stimulation with SIN-1. Stimulation with PMA or SIN-1 resulted in a dose-dependent upregulation of the VEGF protein (as determined using ELISA) and an increase in the level of NO in the medium. Our findings indicate ROS-mediated induction of VEGF and VEGF receptors in chondrocytes and cartilage explants. These results demonstrate a relationship between ROS and VEGF as multiplex mediators in articular cartilage degeneration

    Potent inhibition of cartilage biosynthesis by coincubation with joint capsule through an IL-1-independent pathway

    Get PDF
    The reason for the increased risk for development of osteoarthritis (OA) after acute joint trauma is not well understood, but the mechanically injured cartilage may be more susceptible to degradative mediators secreted by other tissues in the joint. To establish a model for such interactions, we coincubated bovine cartilage tissue explants together with normal joint capsule and found a profound (∼70%) reduction in cartilage proteoglycan biosynthesis. This reduction is due to release by the joint capsule of a heat-labile and non-toxic factor. Surprisingly, while cultured synovium is a canonical source of interleukin-1 (IL-1), blockade either by soluble IL-1 type II receptor (sIL-1r) or IL-1 receptor antagonist (IL-1RA) had no effect. Combined blockade of IL-1 and tumor necrosis factor α (TNF-α) also had no effect. To support the clinical relevance of the findings, we harvested joint capsule from post-mortem human knees. Human joint capsule from a normal adult knee also released a substance that caused an ∼40% decrease in cartilage proteoglycan biosynthesis. Furthermore, this inhibition was not affected by IL-1 blockade with either sIL-1r or IL-1RA. These results suggest that joint capsule tissue from a normal knee joint can release an uncharacterized cytokine that potently inhibits cartilage biosynthetic activity by an IL-1- and TNF-independent pathway.Whitaker FoundationGlaxoSmithKlineNational Institutes of Health (U.S.) (grant AR-45779)National Institutes of Health (U.S.). Specialized Centers Of Interdisciplinary Research (grant ARP50-39239

    Comparison of a ceiling-mounted 3D flat panel detector vs. conventional intraoperative 2D fluoroscopy in plate osteosynthesis of distal radius fractures with volar locking plate systems

    Get PDF
    Methods Using a common volar approach on 12 cadaver forearms, total intraarticular distal radius fractures were induced, manually reduced and internally fixated with a 2.4 distal radius locking compression plate. 2D (anterior-posterior and lateral) and 3D (rotational) fluoroscopic images were taken as well as computed tomographies. Fluoroscopic images, Cone Beam CT (CBCT), 360° rotating sequences (so called "Movies") and CT scans were co-evaluated by a specialist orthopedic surgeon and a specialist radiologist regarding quality of fracture reduction, position of plate, position of the three distal locking screws and position of the three diaphyseal screws. In reference to gold standard CT, sensitivity and specifity were analyzed. Results "Movie" showed highest sensitivity for detection of insufficient fracture reduction (88%). Sensitivity for detection of incorrect position of plate was 100% for CBCT and 90% for "Movie." For intraarticular position of screws, 2D fluoroscopy and CBCT showed highest sensitivity and specifity (100 and 91%, respectively). Regarding detection of only marginal intraarticular position of screws, sensitivity and specifity of 2D fluoroscopy reached 100% (CBCT: 100 and 83%). "Movie" showed highest sensitivity for detection of overlapping position of screws (100%). When it comes to specifity, CBCT achieved 100%. Regarding detection of only marginal overlapping position of screws, 2D fluoroscopy and "Movie" showed highest sensitivity (100%). CBCT achieved highest specifity (100%). Conclusion As for assessment of quality of fracture reduction and detection of incorrect position of plate as well as overlapping position of the three diaphyseal screws CBCT and "Movie" are comparable to CT - especially when combined. Particularly sensitivity is high compared to standard 2D fluoroscopy

    Effects of Dexamethasone on Mesenchymal Stromal Cell Chondrogenesis and Aggrecanase Activity: Comparison of Agarose and Self-Assembling Peptide Scaffolds

    Get PDF
    Objective: Dexamethasone (Dex) is a synthetic glucocorticoid that has pro-anabolic and anticatabolic effects in cartilage tissue engineering systems, though the mechanisms by which these effects are mediated are not well understood. We tested the hypothesis that the addition of Dex to chondrogenic medium would affect matrix production and aggrecanase activity of human and bovine bone marrow stromal cells (BMSCs) cultured in self-assembling peptide and agarose hydrogels. Design: We cultured young bovine and adult human BMSCs in (RADA)[subscript 4] self-assembling peptide and agarose hydrogels in medium containing TGF-β1±Dex and analyzed extracellular matrix composition, aggrecan cleavage products, and the effects of the glucocorticoid receptor antagonist RU-486 on proteoglycan content, synthesis, and catabolic processing. Results: Dex improved proteoglycan synthesis and retention in agarose hydrogels seeded with young bovine cells but decreased proteoglycan accumulation in peptide scaffolds. These effects were mediated by the glucocorticoid receptor. Adult human BMSCs showed minimal matrix accumulation in agarose, but accumulated ~50% as much proteoglycan and collagen as young bovine BMSCs in peptide hydrogels. Dex reduced aggrecanase activity in (RADA)[subscript 4] and agarose hydrogels, as measured by anti-NITEGE Western blotting, for both bovine and human BMSC-seeded gels. Conclusions: The effects of Dex on matrix production are dependent on cell source and hydrogel identity. This is the first report of Dex reducing aggrecanase activity in a tissue engineering culture system.National Science Foundation (U.S.). Graduate Research FellowshipNational Institutes of Health (U.S.) (Grant EB003805

    Stress-vs-time signals allow the prediction of structurally catastrophic events during fracturing of immature cartilage and predetermine the biomechanical, biochemical, and structural impairment

    Get PDF
    Objective Trauma-associated cartilage fractures occur in children and adolescents with clinically significant incidence. Several studies investigated biomechanical injury by compressive forces but the injury-related stress has not been investigated extensively. In this study, we hypothesized that the biomechanical stress occurring during compressive injury predetermines the biomechanical, biochemical, and structural consequences. We specifically investigated whether the stress-vs-time signal correlated with the injurious damage and may allow prediction of cartilage matrix fracturing. Methods Superficial and deeper zones disks (SZDs, DZDs; immature bovine cartilage) were biomechanically characterized, injured (50% compression, 100%/s strain-rate), and re-characterized. Correlations of the quantified functional, biochemical and histological damage with biomechanical parameters were zonally investigated. Results Injured SZDs exhibited decreased dynamic stiffness (by 93.04 ± 1.72%), unresolvable equilibrium moduli, structural damage (2.0 ± 0.5 on a 5-point-damage-scale), and 1.78-fold increased sGAG loss. DZDs remained intact. Measured stress-vs-time-curves during injury displayed 4 distinct shapes, which correlated with histological damage (p < 0.001), loss of dynamic stiffness and sGAG (p < 0.05). Damage prediction in a blinded experiment using stress-vs-time grades was 100%-correct and sensitive to differentiate single/complex matrix disruptions. Correlations of the dissipated energy and maximum stress rise with the extent of biomechanical and biochemical damage reached significance when SZDs and DZDs were analyzed as zonal composites but not separately. Conclusions The biomechanical stress that occurs during compressive injury predetermines the biomechanical, biochemical, and structural consequences and, thus, the structural and functional damage during cartilage fracturing. A novel biomechanical method based on the interpretation of compressive yielding allows the accurate prediction of the extent of structural damage.National Institutes of Health (U.S.) (Grant R01-AR45779)Deutsche Forschungsgemeinschaft (Grant RO2511/1-1)Deutsche Forschungsgemeinschaft (Grant RO2511/2-1)Germany. Federal Ministry of Education and Research (Grant 01KQ0902B TP2

    The geometrical shape of mesenchymal stromal cells measured by quantitative shape descriptors is determined by the stiffness of the biomaterial and by cyclic tensile forces

    Full text link
    Controlling mesenchymal stromal cell (MSC) shape is a novel method for investigating and directing MSC behaviour in vitro. it was hypothesized that specifigc MSC shapes can be generated by using stiffnessâ defined biomaterial surfaces and by applying cyclic tensile forces. Biomaterials used were thin and thick silicone sheets, fibronectin coating, and compacted collagen type I sheets. The MSC morphology was quantified by shape descriptors describing dimensions and membrane protrusions. Nanoscale stiffness was measured by atomic force microscopy and the expression of smooth muscle cell (SMC) marker genes (ACTA2, TAGLN, CNN1) by quantitative reverseâ transcription polymerase chain reaction. Cyclic stretch was applied with 2.5% or 5% amplitudes. Attachment to biomaterials with a higher stiffness yielded more elongated MSCs with fewer membrane protrusions compared with biomaterials with a lower stiffness. For cyclic stretch, compacted collagen sheets were selected, which were associated with the most elongated MSC shape across all investigated biomaterials. As expected, cyclic stretch elongated MSCs during stretch. One hour after cessation of stretch, however, MSC shape was rounder again, suggesting loss of stretchâ induced shape. Different shape descriptor values obtained by different stretch regimes correlated significantly with the expression levels of SMC marker genes. Values of approximately 0.4 for roundness and 3.4 for aspect ratio were critical for the highest expression levels of ACTA2 and CNN1. Thus, specific shape descriptor values, which can be generated using biomaterialâ associated stiffness and tensile forces, can serve as a template for the induction of specific gene expression levels in MSC. Copyright © 2017 John Wiley & Sons, Ltd.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141253/1/term2263.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141253/2/term2263_am.pd
    corecore