7 research outputs found

    CURRENT METHODS IN ISOLATION OF HEMATOPOIETIC STEM CELL

    No full text
    Hematopoietic stem cells are the rare cells in various hematopoietic organs which are found in small numbers (1-100 cells/ml). When these cells are transferred to patients suffering from diabetes, cancer, heart diseases, muscle and joint problems, they will help the patients' bodies with the regeneration of impaired tissues. While the most important problem in the transplantation of autologous stem cells is malignant cell contamination in cancer patients, in allogeneic transplantation, it is immune reactions and tissue rejections. Therefore, clearing of the transplant material from tumour cells and immune cells may support the long-term healthy regeneration of the tissue to which they are transplanted. Although various techniques have been developed for the purification of these cells in terms of clinical use over many years, there is still no sufficiently effective method. In recent years, researchers have shown an increased interest in microfluidic systems because they are easy to use, cheap and highly efficient. In these types of systems designed with various microcapillaries, micropillars and micropores; purification is carried out according to the properties of cells such as size, deformability, cell adhesion and electrical charges. This review aims to explain traditional and emerging hematopoietic stem cell isolation methods and their advantages and disadvantages

    The in vitro treatment of mesenchymal stem cells for colorectal cancer cells

    No full text
    Colorectal cancer is the most common tumor of the gastrointestinal system. The conventional treatment options for colorectal cancer are troublesome for both patients and clinicians. Recently, mesenchymal stem cells (MSCs) have been the novel focus for cell therapy due to their migration to tumor sites. In this study, the apoptotic effect of MSCs on colorectal cancer cell lines has been aimed. HCT-116 and HT-29 were selected as the colorectal cancer cell lines. Human umbilical cord blood and Wharton’s jelly were used as mesenchymal stem cell sources. To discriminate against the apoptotic effect of MSC on cancer, we also used peripheral blood mononuclear cells (PBMC) as a healthy control group. Cord blood-MSC and PBMC were obtained by ficoll-paque density gradient, and Wharton’s jelly-MSC by explant method. Transwell co-culture systems were used as cancer cells or PBMC/MSCs at ratios of 1/5 and 1/10, with incubation times of 24 h and 72 h. The Annexin V/PI-FITC-based apoptosis assay was performed by flow cytometry. Caspase-3 and HTRA2/Omi proteins were measured by ELISA. For both ratios in both cancer cells, it was found that the apoptotic effect of Wharton’s jelly-MSC was significantly higher in 72-h incubations (p < 0.006), whereas the effect of cord blood mesenchymal stem cell in 24-h incubations were higher (p < 0.007). In this study, we showed that human cord blood and tissue-derived MSCs treatment led to colorectal cancers to apoptosis. We anticipate that further in vivo studies may shed light on the apoptotic effect of MSC

    Evaluation of burst release and sustained release of pioglitazone-loaded fibrous mats on diabetic wound healing: an in vitro and in vivo comparison study

    Get PDF
    In order to provide more effective treatment strategies for the rapid healing of diabetic wounds, novel therapeutic approaches need to be developed. The therapeutic potential of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist pioglitazone hydrochloride (PHR) in two different release kinetic scenarios, burst release and sustained release, was investigated and compared with in vitro and in vivo tests as potential wound healing dressings. PHR-loaded fibrous mats were successfully fabricated using polyvinyl-pyrrolidone and polycaprolactone by scalable pressurized gyration. The results indicated that PHR-loaded fibrous mats expedited diabetic wound healing in type-1 diabetic rats and did not show any cytotoxic effect on NIH/3T3 (mouse embryo fibroblast) cells, albeit with different release kinetics and efficacies. The wound healing effects of fibrous mats are presented with histological and biochemical evaluations. PHR-loaded fibrous mats improved neutrophil infiltration, oedema, and inflammation and increased epidermal regeneration and fibroblast proliferation, but the formation of hair follicles and completely improved oedema were observed only in the sustained release form. Thus, topical administration of PPAR-gamma agonist in sustained release form has high potential for the treatment of diabetic wounds in inflammatory and proliferative phases of healing with high bioavailability and fewer systemic side effects
    corecore